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1.   INTRODUCTION 

The Military Computer Family (MCF) concept calls for the government to 

relinquish specific implementation control and specify only form, fit, and 

function (F3) requirements [7]. As a consequence, an area of concern is that 

of built-in-test (BIT), a critical component of the MCF maintenance concept 

[1,2]. Because of the F3 procurement approach, BIT is specified by stating 

requirements in terms of "percentage of failures detected" rather than in terms 

of specific BIT techniques. For example, the AN/UYK-41 member of the Military 

Computer Family, has a fault detection objective of 98 percent with less than a 

1 percent false alarm rate. 

In previous studies of self-test approaches for MCF, RTI identified BIT 

mechanisms and their corresponding fault manifestations [3,4]. In this earlier 

work, RTI studied the effects of faults on software program behavior [4], The 

approach taken was to describe an implementation of the existing MCF 

architecture, PDP-11/70, using the Instruction Set Processor language (ISP). 

The ISP description was simulated and faults injected [5]. Selected test 

programs were run using simulation and the impact of these faults on the 

software observed. The resulting fault manifestations were characterized and 

their cause and effect relationships analyzed. 

The initial PDP-11/70 architecture, has been superseded by a new 32-bit 

architecture defined by MIL-STD-1862 [6]. The new architecture has not yet been 

implemented, so now is an appropriate juncture for a critical analysis of its 

predicted testability characteristics. Modifications and additions to existing 

MIL-STD-1862 features should be incorporated as early as possible in the 

development process in order to ensure the testability of future 

implementations. 

This report discusses MIL-STD-1862 built-in-test and the implications of 

BIT for the software. This work is a logical follow-on to RTI's previous work 

on BIT approaches for detecting errors and handling these errors in MCF 

machines. 

Built-in-Test approaches discussed in this report fall into two categories; 

concurrent and nonconcurrent BIT (as shown in Figure 1 and discussed in 

Reference [7]). The present report is divided into two sections which discuss 

BIT and BIT-related problems in both the concurrent and the nonconcurrent BIT 

MM, 
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categories. In the concurrent BIT discussion, exceptions and interrupts are 

defined in terms that expand upon the explanations found in MIL-STD-1862 and the 

MCF prime item specifications [1,2]. For example, MIL-STD-1862 does not address 

the questions of how BIT signals are to be reported to software.  Instead, it 

mentions two BIT signals that make use of the MIL-STD-1862 interrupt mechanism 

and goes no further. This report analyzes three mechanisms that currently exist 

in the MCF architecture that could be used fo. reporting BIT errors. Based on 

this analysis, a reporting mechanism for MCF is then recommended.  With the 

knowledge that many BIT-detected errors will be transient in nature, the idea of 

a "retry" mechanism is presented, along with an explanation of why it is needed 

in hardware and why it would be beneficial via software [8]. Finally, an 

integral method of handling BIT signals using both hardware and software is 

presented. 

The second section of this report discusses nonconcurrent BIT issues and 

alternatives. An overview of software error handling in the operating system 

environment is presented. In the context of software error handling, the 

ability to explicitly test improperly functioning units is addressed along with 

several instructions that could be used for testing these units. Finally, 

fault-tolerant software is discussed with particular emphasis on fault 

recovery. 
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2.  CONCURRENT BUILT-IN-TESTS 

Requirements for the AN/UYK-41 and the AN/UYK-49 members of the 

Military Computer Family (MCF) dictate the incorporation of built-in test 

(BIT) techniques for fault detection and correction [1,2]. The prime 

documents for the AN/UYK-41 and 49 specify that "BIT shall eliminate the 

need for any support equipment to indicate faulty system operation. BIT 

shall be incorporated to continually monitor system operation." The extent 

to which BIT is utilized in these computers is not specified and will 

presumably be left up to the implementation contractor. Conceivably, BIT 

will vary from implementation to implementation and will be included only 

to the extent needed to achieve the reliability goals stated which include 

"upper test" mean time between failures (MTBF) targets between 10,000 and 

100,000 hours) [1,2]. 

Key questions that arise are: 

- At what level should BIT-detected errors be handled: user level, 
operating system level, or hardware level? 

- What mechanism should be used to report BIT-detected errors to 
the software? 

- What are the consequences and implications of "instruction 
retry"? 

The following section will address these issues and develop a 

rationale for their solution. 

In regard to the first question, handling all BIT-detected errors at 

the user level is easily rejected. The user should not be bothered, or 

even know, that the machine on which he operates is less than perfect. He 

should not have to write his own BIT handlers; in general he does not have 

the information for dealing with these errors nor the privilege level 

required to deal with them. There are numerous other reasons why the user 

should not be asked to deal with BIT-detected errors. These will not be 

discussed. 
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Historically, BIT-detected errors have been handled by both the hardware 

(instruction retry, error correcting codes) and the operating system (managing 

bad blocks of memory). Unfortunately, this has not always been a cooperative 

effort, which has led to the need for the new approaches proposed in this 

report. There are advantages and disadvantages for BIT-detected error handling 

in both the hardware and the software. In hardware, the error handler can be 

designed to be a very specific, selfchecking piece of hardware with limited 

access by other hardware elements [9]. This reduces the possibility of an error 

in the handler itself. Software, by contrast, may use the same hardware each 

time it executes. If the hardware is faulty, then the software execution may 

fail. Hardware generally implements only one algorithm and may not take 

advantage of much of the information available to it. Software is much more 

flexible in that it can realize multiple algorithms based on the information 

available. 

Before discussing the level at which BIT-detected errors should be handled, 

other issues must be raised. After answering these questions, we will have 

presented information and ideas that can be used in discussing the "appropriate 

level for handling BIT-detected errors." 

Conceivably, any mechanism for reporting BIT-detected errors to software 

should not violate the philosophy of the MCF architecture; rather, it should 

exist within the framework of the architecture and, therefore, be an integral 

part of it. Three distinct mechanisms for reporting exceptions and interrupts 

already exist in the proposed MCF architecture. These are the software and 

hardware exception facilities and the interrupt facility. Each facility is 

different and each has its own advantages and disadvantages as a means of 

communicating BIT-deterted errors. 

The following discussion characterizes MCF exceptions and interrupts and 

then addresses the reporting mechanisms. 

I 
I 
i 
I 

] 

D 
a. Exceptions 

There are two distinct types of exceptions,  "software exceptions"  and 

"hardware exceptions."    The software exception  is an event caused by an error in 

the currently executing software,  such as an illegal  address,  a divide-by-zero, 

(I 



or a task failure. Because software exceptions have no latency; i.e., they will 

not disappear with time, they need not be handled at top priority. The event 

can sometimes be ignored, as with overflow or underflow; in other cases, it must 

be handled to decide if the program should be aborted, as with invalid access 

or illegal address. These events should not recur if the handler is "correctly 

written." The manifestation of the event is selflocalizing. 

(1) The Software Exception 

A software exception is caused solely by the currently executing program 

and its data. Such an exception could be repeated by simply re-executing a 

certain segment of code in a specified environment. It is therefore logical for 

these exceptions to be hand" }d entirely by the program units in which they 

occur. 

There are three major schemes for coping with software exceptions [10]: 

signal, notify and escape. All three schemes are essentially similar and differ 

only on the issue of postexception flow of control. The first two schemes 

basically allow the program unit in which the exception occurs to resume 

program control at the point at which the exception occurred. This philosophy 

is evident in Mesa [11] and Alphard [12]. The third scheme requires local 

termination (escape) upon detection of errors. This approach has been adopted 

partially by certain dialects of Bliss (with the SIGNAL_ST0P construct) [13] and 

completely by Ada [14], the latter of which enjoys the distinction of having the 

MCF architecture as its host machine. 

The Steelman [15] requirements for high-order programming languages used by 

the Department of Defense specify that exception handling shall be of the 

"escape" variety. Thi-s is basically a restrictive approach since it automati- 

cally terminates the excepted program unit. It is not, however, nearly so 

restrictive an approach as it first appears to be, because the caller of the 

excepted program unit is at liberty to call that unit at a later time, if it 

determines that conditions are more conducive to its successful elaboration 

(e.g., pathological data have been eliminated, queueing delays have been 

In this case "exception" does not necessarily mean "undesired event" but 

r'ather "rarely occurring event." 

6 



PROCEDURE Gauss IS 

TYPE Vector IS ARRAY (1 .. N) OF Real; 

TYPE Matrix IS ARRAY (1 .. N) OF Vector; 

solution: Vector; 

M: Matrix; -- augmented coefficient matrix 

Singular, IllConditioned: EXCEPTION; 

PROCEDURE Process [M: Matrix] IS 

. 

overcome, and timeouts are no longer a hindrance). 

Different types of exception mechanisms necessitate fairly different 

programming styles; hopefully, "escape" or "bail-out" programming is the more 

manageable and disciplined style of programming. Moreover, termination of the 

offending program unit is a virtual necessity if formal program verification or 

correctness techniques are to be employed [14]. This consideration applies to 

optimization methods as well. 

As a real-life paradigm for the type of exception handlinq discussed 

above, consider the following procedure: 

1 
PROCEDURE Pivot [M: Matrix, n: Natural] IS 

BEGIN 

-- code to pivot the nth row of M 

END Pivot; 

PROCEDURE Triangularize [M: Matrix, n: Natural] IS 

BEGIN 

• „ C0(je to lower-triangularize M 

-- arithmentic exceptions may be generated here 

EXCEPTION 

WHEN DivideByZero => RAISE Singular; 

WHEN OverFlow => RAISE IllConditioned 

END Triangularize; 

PROCEDURE BackSubstitute [M: Matrix] 

RETURN Vector IS 

I 
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BEGIN 

-- solve by substituting values 

-- during the first back-substitution an arithmetic error 

-- may be raised 

EXCEPTION 

WHEN DivideByZero => RAISE Singular 

END BackSubstitute; 

BEGIN — Process 

FOR n IN 1   ..    N-l LOOP 

Pivot(M, n); 

Triangularize(M,  n); 

END LOOP; 

solution  := BackSubstitute(M); 

EXCEPTION 

WHEN Singular => Print("The system has no unique solution"); 

WHEN 111-Conditioned => Print("The system is 

ill-conditioned"); 

END Process; 

BEGIN — Gauss 

more:    String  :=  "Yes"; 

WHILE more = "Yes" LOOP 

Print("Enter the augmented coefficient matrix."); 

Read(M); 

Print("More?"); 

Read(more); 

END LOOP; 

END Gauss; 

The Gauss procedure implements the Gaussian elimination algorithm by 

repeatedly pivoting the rows of the augmented coefficient matrix of a system of 

N simultaneous linear equations in N unknowns.    The Pivot and Triangularize 

procedures perform the required elementary row operations on the augmented 

coefficient matrix,  and  if the divide-by-zero exception is generated, then the 

program knows that the pivot element must have been equal  to zero,  in which 

8 
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case the system is singular. If an overflow exception is generated, then one of 

the entries of the augmented coefficient matrix is large enough to cause the 

matrix to have a large condition number (i.e., the system is illconditioned). 

Exception handling of this sort is not foolproof, nor is it magic, since any 

number of exceptions may be generated during the execution of a segment of code. 

However, it does go a long way toward helping a programmer cope with the 

bizarre, the less-than-mundane, and the novel. 

'i 

I 

. (2) The Hardware Exception 

The second exception type is the hardware exception. This event is caused 

by the hardware. It is not directly related to the software exercising the 

hardware, e.g., parity, power-fail, BIT. It is characterized by requiring quick 

handling so as to reduce or limit any data corruption. The event can not be 

ignored and may recur while executing its handler. The event needs to be 

localized to the least replaceable unit (LRU) in which the event occurred (not 

necessarily manifested) for maintenance purposes. It is vitally important that 

hardware exceptions be tended expeditiously (usually by some  specially written 
trap handler). Barring any further complications, the flow of control should 

revert back to the point in the program unit at which the exception occurred. 

This is an explicitly stated, absolute criterion that should be met by the MCF 

architecture [16] that states, "It must be possible to write a trap handler that 

is capable of executing a procedure to respond to any trap condition and then 

resume operation of the program." This presents some special difficulties for 

architectures (such as the MCF's) that allow instructions to be interrupted in 

midexecution. It would be desirable to resume the instruction's execution 

precisely (or as close as possible) where it was cut off. There are critical 

issues to address with respect to this problem; these are considered below. 

These definitions of software exception and hardware exception differ from 

the definition of exception in the prime item reports and MIL-STD-1862. They 

are defined in this manner to draw a closer distinction between the MCF idea of 

exceptions and BIT-type exceptions. 

H 
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b. Interrupts 

Interrupts are asynchronous events generated externally or independently of 

the executing instruction. They are used to inform the systeir that some 

specific action has happened or is about to happen. These events characteristi- 

cally require rapid handling, due in part to data latency. An interrupt can be 

ignored if it lacks sufficient priority to receive attention 

deferred until its priority is high enough to insure some a 

Table 1 lists the characteristics of software exception  - drdware excep- 

tions, and interrupts. Some of these characteristics are discus; 

MIL-STD-1862. Those that are not discussed in the MCF document < 

the following section. Some of the other characteristics are also m 

this section. 

c. Exception and Interrupt Facilities 

MIL-STD-1862 does not explicitly define an exception. InsU 

"Program errors are handled by the exception facility," and "... ar 

may be raised by RAISE or ERET instructions, or by the detection of an 

condition by the hardware." The phrase, "... or by the detection of an 

condition by the hardware," implies that BIT-detected errors are handled by I 

exception facility. However, some events (such as parity or power-fail) that 

are defined as interrupts or use the interrupt facility in MIL-STD-1862 clearly 

fall in the area of hardware exceptions. Based on MIL-STD-1862 as it now stands 

and prime item reports [1,2,17], BIT exception handling is spread over two 

separate and distinct facilities. RTI feels that this is not what was intended 

by the specifications. The MIL-STD-1862 phrase in question could better read, 

"... or by the detection of range or domain violations by tire hardware." This 

phrase would then specifically refer to signals such as carry, underflow, 

overflow, truncate or divide-by-zero. In the following paragraphs RTI will 

discuss why only one dedicated facility should be used for handling BIT detected 

errors. 

Three different mechanisms are used to communicate to exception and 

interrupt handlers when an interrupt or exception occurs. Exceptions use two of 

these mechanisms: (1) passing the exception code to the locally defined excep- 

tion handler or (2) a parameterized call to the supervisor exception handler. 

The third mechanism is the interrupt and trap facility. 

10 



Table 1. Characterization of Software Exceptions, 
Hardware Exceptions and Interrupts from 
MIL-STD-1862. 

CHARACTERISTIC SOFTWARE EXCEPTIONS HARDWARE EXCEPTIONS INTERRUPTS 

Asynchronous or 
synchronous with 
respect to program 
execution Synchronous Asynchronous Asynchronous 

Data latency 
problem No No Yes 

Data corruption No Yes No 

Need Immediate 
attention Yes Yes Not always 

State Information 
need to be saved? No Not discussed Not discussed 

Priorities 
required? No Yes Yes 

Instruction retry No No Yes 

Maskable Yes No Yes 

1 
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(1) Procedure-associated Exception Facility 

Local exception handlers are segments of code within a procedure with 

which the handler is associated. The actual association is made at 

procedure entry by setting the "exception handler specified" bit of the 

entry header or by executing an EXCEPT instruction which provides the 

address of a code segment which is invoked if an exception is raised. 

These handlers are not procedures but segments of code to which the program 

branches if an exception is signalled. 

The only information available to these local handlers about the 

exception is the exception code generated by the exception. There is no 

capability nor information that allows these handlers to return to the 

location at which the exception is raised; thus local exceptions are 

terminal exceptions for the procedure with which they are associated. 

(2) Supervisor Exception Facility 

The other exception handler is the supervisor exception handler, which 

is permanently associated with every  task. Whether the supervisor 

exception or local exception handler is invoked is determined by the 

up/down level exception (UDLE) bit in the processor status word (PSW) of 

the machine. This handler is invoked like a procedure call and thus has 

its own execution frame. It is also invoked as a privileged task on the 

kernel context stack. The information passed to the supervisor exception 

handler is the exception code, the address at the beginning of the 

instruction that was executing, and the program counter of the context 

which invoked the supervisor exception handler. 

The supervisor exception handler was designed to work in the debugging 

environment, not to be a part of the debugged system [18]. The only other 

time the supervisor exception handler is invoked is when an exception has 

propagated to the base of an execution frame. It is then invoked with a 

task failure exception, not with the exception that was raised in the base 

context. In this case it is invoked with the task failure exception to act 

as a buffer between the task with a task failure and the task that spawned 

the failed task. In this way no exception is passed to the spawner. 

Recall that in the MCF architecture exceptions handled by the local handler 

12 
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eventually cause the termination of the context in which they are raised. So 

the spawner's context that handled this exception would have to terminate, were 

it not for the buffer zone provided by the supervisor exception handler. 

(3) Interrupt Facility 

The interrupt and trap facility is treated as a parameterized call with the 

address of the handler held in a vector. The parameters for each entry are 

defined by the MCF architecture. The vector and implicit priority are also 

defined by the MCF architecture. When an .interrupt occurs, the priority of the 

interrupt is checked against the priority of the executing task. If the 

interrupts priority is higher than the executing task's priority, the interrupt 

takes effect immediately. A new context is built with the address in the vector 

location used as the address of the interrupt handler's entry point. 

The interrupt facility has several advantages as a BIT-detected error 

handler. The correct handler is immediately invoked upon receipt of a 

BIT-detected error. The necessary information can be passed as parameters to 

the handler routine, and these need only be defined in the architecture. 

BIT-detected errors can be grouped according to levels of severity, with the 

most severe errors invoking a hardware routine similar to power-fail to save the 

status of the machine. The handler is a procedure; thus it can be exited, and, 

with proper programming, the instruction where the error occurred can be resumed 

or restarted. 

Comparing the needs of the hardware exception handler with the characteris- 

tics of the interrupt facility, one can see that they fairly well match each 

other in terms of needs and abilities. 

The MCF architecture currently recognizes that parity errors and power-fail 

are best serviced by the interrupt facility. It should be obvious from the 

above discussion that the remaining hardware exceptions should use the same 

mechanism. 

i 
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d. Retry 

The third question regarding concurrent built-in-tests concerns the 

implications of "instruction retry." The capability to retry an instruction 

(this includes resuming an instruction) has historically been a hardware 

capability invisible to the programmer. This section discusses the problems and 

differences of retry after hardware exceptions and interrupts. This discussion 

is basically the hardware view of instruction retry. The final subsection 

discusses different instructions that can be used to explicitly control retry 

from the software level. This approach is based on the idea that if a 

BIT-detected error is handled in software and results in the operation being 

corrected, then a posible alternative is to retry the "interrupted 

instruction." 

"Interrupted instruction" will be used a great deal in the following 

paragraphs. It should be understood to include the occurrence of an interrupt 

and also the occurrence of a hardware exception. It does not include software 

exceptions. 

(1) Returning from Hardware Exceptions 

Many BIT-detected errors are manifestations of transient faults. As 

circuit density increases, the percentage of transient faults to overall faults 

will increase, e.g., as a result of substrate-generated alpha particles. 

Because so many of these errors are due to transients, the idea of a retry 

capability appears attractive [19, 20, 21]. 

In an earlier MCF report [16], the retry capability was listed as a 

desirable asset. In the MCF architecture, the appropriate granularity for 

specifying retry is at the instruction level. To specify retry at the 

instruction level, the address of the beginning of the interrupted instruction 

must be available. 

There is a problem with this approach -- what if the BIT-detected error 

occurs while in the instruction execution cycle? Retrying the instruction could 

produce erroneous results if some information in program visible storage were 

altered while executing, e.g., if a partial block move or edit were performed. 

Since the ability to resume &n  instruction is desired, all possible BIT-detected 

/* 
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errors need to have manifested themselves before a change is made to the program 

visible storage in each iteration of the execution cycle. If this is possible, 

the machine can resume execution at the point following the last change to the 

program visible storage, assuming that the state at that point is saved or can 

be reconstructed [18]. As an aid to understanding the following paragraphs, a 

model of the instruction cycle is provided in Figure 2. An example to 

illustrate the concepts of "retrying" and "resuming" follows. 

In the figure, an instruction, move block (MOVBLK), is being executed. The 

machine is in the operand evaluation cycle and a BIT-detected error occurs. 

Based on information available about the state of the interrupted instruction, 

the handler decides to retry this instruction. The handler issues a RETRY 

instruction and supplies the address of the instruction to be retried. Since 

instruction fetch and operand evaluation have no side effects other than 

incrementing the program counter (PC), RETRY can be done without saving any more 

information than the address of the beginning of the current instruct'on. This 

value is defined in the ISP of the MCF architecture as old.PC, see Appendix A, 

and it is passed as a parameter to the supervisor exception handler. This is to 

indicate the availability of this datum in the current specification of the MCF 

architecture. 

In an instruction such as the MOVBLK the microcode that implements the 

execution cycle is generally executed as a loop, with the loop control as the 

count parameter of the instruction and the body of the loop as an execution 

phase. To RESUME an execution cycle, the internal state of the machine must be 

preserved or reconstructed every  time the execution phase loop is executed. 

This internal state can include the opcode (points to the microcode), current 

address of the source and destination, and the current count of the loop. The 

information saved and the amount saved is necessarily implementation dependent. 

A discussion of where this information could be saved will be deferred until 

later. 

(2) Returning from Interrupts 

Another issue that pertains to the above discussion of retry and resume is 

the interruptability of instructions. Several instructions are stated to be 
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Instruction: 
MOVBLK #5,Source,Destination 

CYCLE ACTION 

Opcode Fetch IR<-M0VBLK 

Operand Evaluation 

Phase 1 

Phase 2 

Phase 3 

0Pl<-#5 

0P2<-Source 
0P3<-Destination 

Execution 

Phase 1 

Phase 2 

Phase 3 

Phase 4 

Phase 5 

Source—>Desti nation 

Source+1—>Destination+1 

Source+2—>Destination+2 

Source+3-->Destination+3 

Source+4-->Destination+4 

Fig. 2. Cycles and Phases in Instruction Interpretation. 
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interruptable (string instructions). If they are interruptable, how are they 

restarted? Again, this is the idea of resuming an instruction. The explicit 

specification that an instruction is interruptable implies that the instruction 

cycle is interruptable and thus can be retried or resumed.  Is the capability to 

retry or resir«* an explicit machine instruction fully understood by the 

programmer as to its requirements, drawbacks, and side effects, or is the 

capability "hidden" from the programmer in such a way that he does not know that 

he is returning to an instruction that will be resumed or retried? MIL-STD-1862 

does not answer any of these questions explicitly, so it is a fair assumption 

that the capability to resume, at least, is a hidden capability. 

What does this mean? It should not be concluded that interrupts and 

BIT-detected errors are one and the same. A BIT detected error means that 

something incorrect has happened and if the current instruction runs to 

completion a possibility exists that incorrect data will be stored in the 

program visible storage. On .the other hand, an interrupt is an event that says 

something needs attention, but can way wait for the current instruction to go to 

completion. Some instructions are interruptable because they can operate on as 

many as 2**32 bytes of memory with one instruction. To complete the distinction 

between these two items, an interruptable instruction is one in which the 

execution cycle can  be suspended once a certain "point" (the end of a phase) in 

the instruction cycle is reached. The internal state saved is the state after 

completing the current phase of the execution cycle. A BIT-detected error says: 

"Stop what you are currently doing and save as internal state the internal state 

as of the last change to program visible storage." Internal state refers to 

memory elements in the machine which are not programmer visible but define the 

status of the machine at any  phase in the instruction cycle. If the machine is 

in the execution cycle, phase N, an interrupt will complete the execution of N 

and save the state in order to resume in phase N+l, while a BIT-detected error 

will abort phase N and save the state of phase N in order to to restart phase N, 

as shown in Figure 3. 

(3) Returning from Software Exceptions 

The software exception is the third type of undesired event that may 
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N-2 I       N-l        I 

BIT detected error 
acknowledged. 

State of phase N saved. 
Execution of phase N aborted. 

Event 
Posted 

J   (    1 
I  N+l   I 
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N+2 

Interrupt acknowledged. 
State of N+l saved. 
Execution of phase N completed. 

Fig. 3(a). Multiphase Execution Cycle. 

t 
Phase N 

Start of phase N 

All possible BIT 
detected errors must 
be signaled by here 

I  I 

State updated to 
phase N+l 

Program visible 
storage change 

Fig. 3(b). Actions in a Phase. 
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impinge directly on instruction resumption. The MCF instruction set is a 

sophisticated procedure-based language with exception handling capabilities. As 

such, we must carefully consider the semantics of program resumption, abortion, 

and retry after the handling of BIT detected errors. The two major questions in 

software exception handling are: 

1) Who handles the exception once it has been generated? 

2) What happens to the overall program after the exception has been 

handled? 

The fi-"st question engenders a number of other questions: should the handler be 

statically or dynamically specified, where is the exception handler specified, 

is there a hierarchy for handling exceptions, etc.? To answer the second 

major question, one must first consider how the program returns from the 

exception handler. Does the excepted program un.it terminate, skip, resume, or 

retry, etc.? Furthermore, one must consider how these problems can be solved by 

the MCF architecture. 

"Exception" will generally be used to refer to the detection of a condition 

which merits special attention. The terms "exception," "condition," and 

"signal" are often used synonomously. Software exceptions may occur at any 

point in the execution of a program; they may be defined by the programmer or 

predefined by the system (e.g., overflow conditions, divide-by-zero, etc.). 

When an exception occurs within a program unit (e.g., procedure, block, loop), 

the unit is said to be excepted or is said to signal the exception (presumably 

to other program units). The excepted unit is sometimes called the offending 

unit or the signaler. Sometimes the excepted unit is said to raise the 

exception, but here terminology is not always consistent (cf. [11], [6], [22]). 

At the time the program unit is excepted, some handler must take control (i.e., 

the handler is invoked). An exception handler can best be described as 

instructions which the programmer intends to be executed whenever a certain 

excrption is signaled. A handler is simply a sequence of instruction 

statements, but different programming languages (if the language implements 

exception handling) have different syntactical and semantic rules for their 
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handlers. For instance, one language may think of an exception handler as a 

statically defined trap routine which is executed and returned from when the 

exception is signaled, while another language associates an exception handler 

with a procedure-like entity which is dynamically determined at run time. Once 

the handler-is invoked by the exception and its context (e.g., the excepted 

program unit), it is executed as a normal sequence of instruction statements. 

After the handler's execution is completed, control will return to some point 

determined by the semantics of the language's exception handling facility. In 

the general model of exception handling it is assumed that a procedure-based 

language is used. "Procedure" is used to mean program text that can be 

activated by reference to the unique name associated with the procedure. Thus 

machine language is discussed as well as high-order language. A procedure P is 

activated by procedure Q's call to P. (A procedure is allowed to call itself.) 

The call relationship which exists at a given point in a program's execution 

implicitly defines the program's activation record or procedure stack. 

Disciplined programming practices require that each procedure be seen as the 

implementation of an abstraction (e.g., a mathematical function), preferably 

with associated documentation or functional specification of the implemented 

abstraction. An important principle in procedure-based languages is the 

principle of information hiding: a program calling another program only 

requires knowlege of the callee's abstraction (essentially its input/output 

relationship) and needs to know nothing of the callee's implementation details. 

Now that the basic exception handling model has been addressed, the 

previously raised question of who shall handle a signaled exception can be 

discussed. First, it must be clear how we specify an exception handler. There 

are three ways to do so: 

(1) The handler can  be specified as completely static: each time the 

exception E is signaled, the handler H(E) is executed. This is 

equivalent to writing a trap handler for a condition. 

(2) A handler is associated with each procedure-exception pair [6]. Here 

the occurence of  a given exception E in procedure P can be handled by 

H(E,P), but the occurence of E in procedure Q might be handled entirely 

differently by handler H(E,Q). 

20 
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(3) The second alternative may be extended by allowing a procedure call 

(not just the procedure body) to have an exception handler associated 

with it. Thus, if Pl,...,Pn are the various calls made to procedure P 

in a program, handler:; H(E,P1),... ,H(E,Pn) may be available to 

handle E. 

Throughout the above discussion we are assuming that we are limited to 

binding the various handlers for a specific exception to elements of the 

program's activation record. Reference [12] shows such am assumption to be 

unnecessary, but we will restrict ourselves to this nonetheless. In general, 

static exception handlers have limited power, so this report will consider 

exception handling models that employ a dynamic binding of the exception handler 

with a combination of the exception and the exception's context. 

Given that an exception handler for exception E is program text which is 

somehow associated with the various procedures of a program, there is still the 

problem of how to decide which of the handlers for E (and in general there may 

be several) will be initiated when an excepted procedure signals E. The 

procedure whose associated handler handles a signaled exception will be called 

the catcher of the exception. 

First, let us review some of the current methods actual programming 

languages use to bind exception handlers to procedures. The MCF architecture 

specifies that every procedure has the option of specifying an exception 

handler. The same is also true of the language Ada [14]. In both cases the 

exception is program text which is appended to the end of the procedure's body. 

Generally, when an exception E is signaled in procedure P, the associated 

handler H(P) examines the value E and, depending on the value, transfers control 

to the appropriate section of H(P) (thus one writes H(P,E)). The idea in both 

the MCF architecture and Ada is that when procedure P signals exception E, 

control is diverted immediately to the handler H(P,E); in other words, the 

catcher and the signaler are the same. 

The CLU language also associates handlers with procedures by including the 

handler at the end of the pro edure body. Unlike the MCF architecture and Ada, 

however, the catcher is the procedure which called the signaler. So, if 

procedure P calls procedure Q which later signals exception E, the resulting 

action transfers control to H(P,E), the handler for E in P. 
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Mesa is by far the most liberal language with respect to exception 

handlers. Mesa's handlers may be associated either with a procedure (the 

handler is included at the start of the procedure body by the ENABLE clause) or 

with a specific call to a procedure (via a catch phrase). Conventional scope 

rules determine which handler is employed (e.g., an ENABLEd handler takes 

precedence over one specified by a catch phrase). In the Mesa scheme, if 

procedure P signals exception E, either P's handler for E or P's call's handler 

for E assumes control. 

In all of these languages except CLU, the signaled exception may not be 

caught by the caller of the signaler, in which case the signal is simply 

propagated further up the call stack. Appealing to the principle that only the 

caller of a signaler should know that the signaler has signaled an exception, 

CLU has taken the unique position that an exception may be propagated from 

signaler to caller, but no further. Otherwise, if a procedure handled 

exceptions that originated deep in the bowels of other procedures it had called, 

this would imply a knowledge of the implementation of the callees on the part of 

the caller. Given all these different mechanisms  for defining exception 
handlers, it may be advisable to have an architecture which is adaptable to 

these various mechanisms. With minor modification the MCF architecture can 

directly support the binding and control transfer mechanisms discussed above. 

The question of where to go after the exception has been handled is still 

open. The MCF architecture, Ada, and CLU all agree that after the exception 

handler has executed its last instruction statement, the signaling procedure 

must terminate. The program then resumes at the point following the call to the 

signaler. This approach is taken on the grounds that the called procedure 

should not depend on the actions of its caller, once the call has been initiated 

— the called signaler's resuming after the calling catcher's handling of the 

exception would violate this. Mesa allows the signaler to be terminated, to 

RETRY the signaler by recalling it, to RESUME at the point in the signaler where 

the execution was signaled or to CONTINUE at the instruction following the 

signal. Whether the last mechanism can be implemented directly in the MCF 

architecture without significant modifications is not clear. However, it could 

be supported by the MCF architecture at the cost of additional overhead (e.g., 
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by including a runtime procedure Signaler which passes the signal to each 

handler in its turn). 

. 

(4) Saving the Interrupted State 

Retrying an instruction from hardware or software requires that a 

certain amount of state information be saved on acknowledgement of an 

interrupt/BIT- detected error [18]. How mu:h information needs to be saved 

is necessarily implementation dependent? A method for determining if the 

previous context was in a "retryable" state is presented. 

There are currently two bits available in the PSW where state 

information can be stored, bits 2 and 3. If this is the maximum number of 

bits available, only four states can be encoded. How is the instruction 

cycle broken up into representable segments by these two bits? Basically, 

resuming an instruction can occur anywhere in the instruction cycle as long 

as sufficient information is saved which can represent the "point" in the 

instruction cycle uniquely. Depending on the "point" this can be an 

excessive amount of information to save. Logical points, where an 

instruction can be interrupted, are after each operand is evaluated or 

after each execution phase. For interrupts this entails completing the 

operand evaluation or execution phase and saving the state beginning at the 

next "logical point." For BIT-detected errors the current activity is 

aborted and the state variables for this control point are saved. In this 

report we have mainly referred to resuming if the event occurred in the 

execution cycle, because program visible storage may already have been 

changed in prior execution phases. Resuming after an event can easily 

encompass operand evaluation. However, throughout this report we will 

assume that one resumes from an event in the execution cycle or retries an 

event in the instruction fetch or operand evaluation cycle. An example 

encoding of the PSW bits follow: 

00 - indicates a "normal" state. This means that the "calling" 
procedure was not "interrupted" while in an instruction cycle. 

01 - indicates a "retryable" state. The procedure was "interrupted" 
while in either the instruction fetch or the operand evaluation 
cycle. 
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10 - indicates a "resumable" state. The procedure was "interrupted" 
while in the execution cycle of an instruction and the "internal 
state" of the machine at that time is saved. 

11 - reserved, could also indicate that an incomplete save was done, 
and so resumption would be dangerous. 

These bits would be set by an interrupt signal or BIT signal. 

The current thinking is that the "internal state" and the state of the 

interrupted instruction should be saved in the context of the handler. It 

is conceptually cleaner to save this information in the context of the 

inte jpted instruction but on the surface it appears to be unwieldy for 

the hardware. Why? Any instructions in the handler that may wish to 

interrogate the status bits or the internal state could only do so with 

great difficulty. If the internal state were saved in the interrupted 

context, either a separate piece of "hardware" or a revamping of the 

current hardware would be necessary to remove this internal state and keep 

the context pointer in order. 

(5) Software Retry 

This section discusses three approaches to explicitly control resuming 

or retrying an instruction from the instruction level. If a BIT error 

handler is to identify an error, isolate the faulty module, and continue 

computing, there must be some way for the error handler to allow computing 

to resume at the point where it was interrupted. By the same token, the 

same capability to resume computing is necessary to return from an 

interrupt handler. 

Let us consider the capability to explicitly retry or resume an 

instruction. RETRY requires the address of the interrupted instruction. 

The address can be passed as a parameter at handler invocation time. The 

instruction should be privileged, and the address should not be explicitly 

stated as an operand. Instead, it should be an implied operand, such as 

:i. 
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"normal," CONTINUE operates like the RETURN. The diffeience between this 

approach and the second approach is that CONTINUE can be made privileged, which 

removes it from the purview of the nonprivileged user. There would also be no 

way in which the state bits could be modified from "resumable" to "retryable". 

There are a few more instructions that could' be useful in supplementing the 

previous approaches. In one of these the state of the interrupted context is 

tested. This instruction would then set the condition code bits. For example, 

a "normal" state could clear all the bits, a "retryable" state could set the "N" 

bit, and a "resumable" state could set the "Z" bit. 

Wuerges and Parnas [23] have advocated three instructions for use in 

undesired event handling. Undesired events map into our classification of 

"hardware" and "software" exceptions and interrupts. Two of their proposed 

instructions, RETRY and CONTINUE, are basically equivalent to RETRY and RESUME. 

Wuerges' third instruction, CLEAR, ignores the "interrupted instruction" and 

starts interpreting the next instruction in sequence. The instruction, more 

importantly, resets the program visible memory to its value at the beginning of 

the "interrupted instruction." This is impractical if a CLEAR is executed on an 

interrupted MOVBLK instruction which was halfway through moving a page of 

memory. In its place we would propose an ABORT instruction which would 

discontinue the interpreting of the "interrupted instruction" and would begin 

interpreting the following instruction. But, the program visible memory would 

not be reset. The programmer should be aware that ABORTing in the "resumable" 

state does not undo the changes of the earlier execution phases in the execution 

cycle. 
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e. Level For Action 

The previous sections discussed why a retry capability is needed in the MCF 

architecture, and presented a brief explanation of hardware and software retry. 

Regarding which level—hardware or software—is better for retry, RTI proposes a 

combination of the two levels in order to take full advantage of the inherent 

strengths of each level. Presented below is a scenario that incorporates 

hardware and software in a integrated system for dealing with BIT-detected 

errors. 
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Upon receipt of a BIT-detected error, the hardware saves the machine's 

state variables and attempts a retry. If it succeeds, the error is considered a 

"soft error" and processing continues in the normal fashion. If the hardware 

retry fails, it tries again several more times.  If all attempts fail, the BIT- 

detected error is considered a "hard error" and the error is passed to the 

software handler. At this point software, in the guise of the error handler, is 

invoked and not before. If the software can "fix" the problem it can retry the 

"interrupted instruction" and continue task execution. Figure 4 presents a 

block diagram describing the actions taken in the event of a BIT-detected 

error. 

Instruction retry is a hardware capability which is shared at the instruc- 

tion level with the programmer via some of the previously mentioned instruc- 

tions. While the capability to retry exists at the instruction level, it can 

not be properly invoked if the state of the previous (interrupted) context does 

not reflect a retryable state. This state can only be set by the hardware when 

it raises a BIT-detected error or an interrupt is received. The state indicator 

can only be cleared by the hardware when it executes one of the retry-type 

instructions. The handler is invoked in the same manner as a procedure, but the 

parameters saved in its context are specified by the architecture. The state 

variables of the interrupted context are saved in some appropriate fashion so 

that they can be restored. 

The software handler can implement several algorithms and use the 

appropriate algorithm, depending upon the information it garnered while 

analyzing the machine. Upon receipt of a BIT-detected error the hardware does 

an automatic retry, if this fails, it can continue issuing retries for a 

specified number of times. Because transient errors often appear in bursts [24] 

it may take multiple attempts before the transients disappear. Ng and Avizienis 

[25] suggest that the hardware scheme have some built-in delays in order to 

"wait out" the error burst. Ng and Avizienis [25], Sedmak [19] and Carter [26] 

also strongly suggest a multilevel recovery strategy that involves more than 

just an instruction retry. Every retry attempt is automatically logged. If the 

hardware retry fails, the appropriate software handler is invoked based on the 

"error code/address." In the case of a severe error, on the same level of 

magnitude with a power fail, the hardware could do a series of retries; if that 

failed, the hardware would try to gracefully close down. 
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The point can be raised that the hardware part of the process could be done 

entirely in software, but there are many important advantages to allowing a 

purely hardware approach to the problem. For example, the extra control 

overhead needed to do the series of retries in hardware is a small fraction of 

the retry hardware that will be required. The hardware can be a separate piece 

of selfchecking hardware that can be isolated to a large extent from the rest of 

the hardware [9]. The time, difficulty, and space requirements required by a 

purely software approach is very large compared to the small hardware overhead 

required. 

This proposed recovery process is a total package which makes efficient use 

of the different strengths at each level. An extension of this strategy to yet 

another level will be discussed in the following section under fault tolerant 

software. This is the idea of doing rollback-and-recovery. Interrupt recovery 

is easily accommodated in^o this recovery process by simply bypassing the 

hardware level retry efforts. 
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3.  NONCONCURRENT BUILT-IN-TESTS 

Whereas concurrent BIT is predominantly implemented in hardware, nonconcur- 

rent 8IT relies almost entirely on software and firmware for its implementation. 

As in any well structured program nonconcurrent, software-based BIT is useful 

because it is modular, portable, modifiable, maintainable, easy to understand, 

and properly designed for human interface. The inherent weakness of software- 

based BIT, of course, is that it depends on the very medium which it intends to 

test. However, experience has shown that intelligently designed software-based 

BIT can be invaluable to the success of a computing system design. 

Consider a computing system based on the Indy 500 principle. In this 

scenario the overall computing system is comparable to the race. The operating 

system includes the operating system and applications programs, the architec- 

ture, and the machine implementation. The driver is the low level monitor of 

his race car's health and performance; he exercises a great deal of control over 

the decisions which govern how the race is to be run. He is directly in touch 

with his machine via the instrument panel and the feel of the car, and the 

decision to continue a lap or pull into the pits when the oil pressure is 

abnormally high is entirely his. Just as the driver presumably has the ability 

to make the correct judgement in matters concerning his racecar, there is a 

sound strategy or algorithm the computing system can use to monitor system 

behavior and act appropriately. One simplistic algorithm is to abort whenever a 

malfunction occurs, which is analagous to stopping the car and being towed into 

the pits whenever the engine temperature exceeds the limit. Other more 

sophisticated and practical techniques are clearly possible. In the event of 

any anomaly, the driver should be able to complete the race or at least get his 

car into the pits. This is the least to be expected of the low-level, first 

echelon BIT (i.e., concurrent BIT). It is generally catastrophic if a program 

is oblivious of recent hardware faults and continuous execution -- if the driver 

is aware of a malfunction, but continues the race and the engine blows at 
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170 mph -- the driver kills himself, four other drivers, the NBC camera crew, 

and eleven spectators. Having coasted into the pits, the driver can give 

control of the car to the pit crew, who can quickly diagnose and repair the 

faulty car. Just as the pit crew is amazingly efficient, so is the 

software-based BIT. Sometimes pit crews can not make the necessary repairs, 

either because the malfunction is serious or there is insufficient time.  In 

this case the racing team has to throw in the towel. By the same token, 

software diagnostics will occasionally have to simply terminate and signal that 

external tests and repair are necessary to revive the system. 

Once an executing program has been interrupted by some undesired event, 

what happens? As previously discussed, an interrupt-like signal is generated 

and termination is suspended. Depending on the information communicated by the 

interrupt, vectoring to some location occurs and a handler is invoked. The 

handler is conceived to be a system-level program which runs on the kernel 

context stack and enjoys certain powerful privileges. 

The handler should be part of a larger diagnostic task. This diagnostic 

task could be broken down into a system exerciser (SysEx) and system files for 

the purpose of error logging. The SysEx is logically composed of and exercises 

control over subroutines which would exercise specific modules of the system 

(e.g., memory, CPU, ALU). These module exercisers could of course be further 

decomposed into submodule exercisers which would target specific subsets of the 

modules components (e.g., relatively device-dependent items such as boards, ICs, 

or register sets). The diagnostic error logs are vital records of the system's 

behavior. They might comprise a pseudo data base which could be written by the 

SysEx whenever errors occurred. Organization of the error logs by attributes 

such as module of occurrence, date of occurrence, frequency of occurrence, and 

threshholds for errors would be a highly desirable feature. Thus the SysEx 

could consult the error logs and base its decisions on information provided by 

the logs [27]. 

Any handler would be invoked with enough information to enable it to beqin 

locating and containing the fault. This information might be as specific as the 

address of a failing byte, or as simple as a message that something is amiss. 

• 
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There would also be a priority associated with each interrupt. The handler 

would use the passed information and the associated priority to determine how to 

localize the fault. The handler would in turn call the module exerciser(s) 

which it has decided is appropriate. It would pass the module exerciser any 

information it considered relevant  The module and submodule exercisers might 

test their corresponding hardware components indefinitely (i.e., terminated by 

some external condition), for a specific number of repetitions, or just once. 

These exercisers would undoubtedly check to see that data paths were open, 

verify that the component's input/output relationships remained invariant, and 

examine the integrity of the component's associated test patterns. The module 

exercisers could then return values to indicate the state of their associated 

hardware modules. The handler could call any number of module exercisers any 

number of times. Results of these tests would be simultaneously logged in "-.he 

error logs. The operating system would have the results of the SysEx made 

available to it, thus offering it the opportunity to avoid usage of faulty 

modules and/or use surrogate modules as replacements for the faulty ones after 

notifying the user of this reconfiguration. 

The SysEx concept would require the expansion of the MCF instruction set to 

accomodate some specific instructions for testing. The following paragraphs 

discuss several different instructions that could be used by the SysEx. 

a. Test Instructions 

The first instruction is a simple, module-level test instruction, TEST 

"module#," where "module*" is the unique address of some specific module. 

Module here can mean an LRU or some subelement of an LRU. The module r.umber is 

the same number returned by BIT when an error is detected. When TEST -s issued 

a set of test patterns are "read" into the unit under test (IJUT) and tne results 

are compared to a standard. If the UUT fails a pattern, it indicates this in 

some manner. Of course, BIT must be disabled so it will not interfere with the 

testing. 

The following example presents a mechanism that can be used to indicate the 

success or failure of a test pattern and logically incorporates a test of BIT 

for false alarms. Each pattern is given a number "i"; if the pattern fails, 

(does not correctly compare), bit "i" is set in a syndrome register, the 

contents of which are automatically logged at the conclusion of the instruction. 
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The output of the comparer and the output of BIT are ANDed together to indicate 

whether the test pattern caused a failure (see Figure 6). 

Comparer BIT 

 H H 

PASS PASS 

PASS FAIL 

FAIL PASS 

FAIL FAIL 

Syndrome 

PASS 

FAIL 

FAIL 

FAIL 

Comparer AND BIT = Syndrome 

In a better method, a bit is set in a BIT syndrome register and BIT sets bit 

"i", depending on its state, after executing each test pattern "i". This 

information is then used with the syndrome register to indicate whether a "false 

alarm" has been raised, if the comparer is in error, or if the indicated test 

pattern passed/failed (see Figure 7). This added information does require more 

decision making. For instance, if the comparer and BIT disagree, who is in 

error? This quandary can be reduced somewhat by making the test circuitry 

hardcore using self-testing methods [9]. Any errors in this mechanism which are 

detected by the self-testing mechanism would raise a high priority BIT error. 

The second test instruction works like the first, except it is based on the 

premise that the machine is implemented as a series of concentric layers 

surrounding a core. This is the same idea as a protected kernel of an operating 

system. The core of the machine can be implemented in hardware and the other 

layers can be implemented in software. As the need for speed increases, the 

software layers can 6e replaced by hardware versions, until the whole system is 

implemented in hardware. 
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This approach could be extended all the way to microcoding parts of the 

operating system. Each concentric layer j requires the innermost concentric 

layers, 0 to j-1, to be correctly functioning before it can function. Checks 

are performed on all information leaving or entering a concentric layer (this is 

the idea of "mutual suspicion" in software [28, 29]). The BIT error number 

represents the concentric layer at which the error was manifested. The 

advantaqe of this scheme is that all functions based in the concentric layer j 

and greater would be considered in error if BIT returned j as the error number. 

The test program invoked by a BIT signal could then test layer j and beyond, 

knowing that the test program was written using functions defined in layers 0 

through j-1.  If the machine's functions were cross-referenced aganist the 

concentric layers, then all functions in these 'ayers could be marked "disabled" 

-- DISABLE "layer#." In the case of instructions, one could then make use of 

the OPEX facility and execute any "disabled" instructions by their software 

equivalent. (The OPEX facility (unimplemented opcodes) is a vectoring facility 

which is used if opcodes are executed that are not implemented in the machine.) 

When the layer in error is replaced, the machine could "re-enable," CLEAR 

"layer#" as well as the "disabled" instructions, and then continue processing. 

One of the original ideas behind the OPEX facility was to permit an implementa- 

tion of a minimal subset of the instruction set in hardware and use OPEX to trap 

unimplemented opcodes to software versions, thus reducinq the microcode of the 

implementation considerably. This could well be used for a set of decimal- 

oriented instructions that are infrequently used on a more scientifically 

oriented implementation. 

In nonconcentric machines a module can be used for various functions.  If 

the module fails and a BIT signal is raised, it is possible for the program 

invoked by the BIT signal to use a function that requires this module. The use 

of a concencric machine is in itself a means to help isolate errors and prevent 

the propagation of corrupted data to other sections of the machine. The 

nonconcentric machine can also take advantage of the OPEX facility if the faulty 

function cai. be effectively isolated from further use. A cross-reference table 

of modules against functions would be required. This table could be very 
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complex and unwieldy if the implementation is not carefully thought through with 

error isolation in mind. DISABLE "module!" would disable all functions that 

make use of "module#" and CLEAR "module#," would re-enable these functions. 

Other instructions for testing the machine would be specific instructions 

that allow one to inspect and modify the internal registers of the machine. 

These would be necessary, in any case, for the maintenance personnel. An 

instruction that could be used at the instruction level for checking the 

integrity of a transmitted byte stream is a cyclic redundancy check, which 

employs a check polynomial up to 32 terms [30]. 

The upshot of the above is that the MCF architecture should directly 

support, via its instruction set, a host of well-known fault tolerance and self 

checking techniques, e.g., module isolation, memory parity codes, concentric 

layering, and cyclic coding for data transmission. 

b. Diagnostics 

A particularly important aspect of nonconcurrent BIT is programmed diagnos- 

tics. Programmed diagnostics are an especially flexible and inexpensive way of 

insuring the ultimate maintainability and reliability of a system. Programmed 

diagnostics have other advantages as well. They can be run more quickly than 

external or manual tests. They are less likely to return erroneous diagnoses 

than human testers. Assuming that support hardware and software are functional, 

one can trust programmed diagnostics to always execute the complete set of 

diagnostic procedures (often highly complex) needed to check out an observed or 

hypothesized failure. 

Once the first-echelon BIT facilities have detected and reported an error 

condition, it may be necessary to execute the resident diagnostic routines in 

order to localize the error. Diagnostics are also of value as a self test at 

startup or  powerup. When a powerup signal is generated an abbreviated diagnos- 

tic routine may be called to perform a low-level checkout of the system's major 

components. This includes such actions as verifying that all circuitry is 

functional, writing and reading certain known patterns (e.g., all ones, all 

zeros, alternating ones and zeros) in all memory locations and registers, 
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transferring such patterns over the busses with checks of the data at source and 

destination, noting that all devices respond correctly to wakeup requests, or 

executing short segments of code whici produce known outputs and checking those 

outputs. The principal uses of diagnostics, therefore, will be for verifying 

the soundness of the system in initia" startup tests; precautionary diagnostics 

while the system or module is idle or dormant; diagnosing modules after a 

failure has occurred; periodic testing of modules (also known as "flexing" or 

"roving") to verify that they are still functional. 

c. Software-Oriented Test and Recovery 

A relatively unexplored technique which shows some promise of improving 

overall system reliability is the use of fault-tolerant software [31, 32]. With 

respect to software, fault tolerance implies three distinct functions: the 

ability to check the results of a computation (including the ability and 

intelligence to discriminate between faulty and fault-free computations), the 

ability to perform computation recovery, and the ability to reconfigure 

software. This technique necessarily requires a high degree of sophistication, 

and, despite potentially high payoffs, work in this field is still at the 

pioneering stage. 

As in any implementation of fault tolerance, the first requirement for 

realizing software fault tolerance is the ability to recognize faulty computa- 

tions. This ability demands a high degree of forethought and has the best 

probability of success when made a primary design goal. Some of the conceivable 

means available for checking the validity or correctness of a software module in 

real time include the use of watch-dog timers, address-in-bounds checks, and 

executable specification assertions. 

A watch-dog timer may be included as an independent timing element which 

clocks and monitors the execution time of modules, interrupts, loops, or other 

program entities. Thus, it is possible to recognize suspicious processes by the 

amount of time consumed in the process. A process which is malfunctioning 

(i.e., violating its intended function) frequently performs futile computations 

or finds itself caught within an infinite loop. Wildly looping software or 
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"dead" processes (e.g., processes which wait on another hardware or software 

module that never responds) will then cause the watch-dog timer to timeout or 

attempt to interrogate the suspected process. 

The address-in-bounds check detects the illegal use of addresses. Data and 

program addresses are often constrained to certain zones of the address space. 

A simple algorithm can then check that data and instruction addresses fall 

within the range which corresponds to these particular data and instructions. 

MCF architecture definition supports hardware checks for address-in-bounds by 

the memory management scheme [6]. 

A common means of testing module validity is the dynamic assertion. Certain 

programming languages (e.g., Ada, the primary MCF high-order language) allow the 

inclusion of predicates placed at entry and exit points of a module. The use of 

assertions in conjuntion with program correctness proofs provides a method for 

on-line checking to see that a program module meets its formal specification. 

Assertions offer a form of software redundancy; the failure of an assertion 

(i.e., when the asserted predicate tests false) during program execution is 

sufficient to indicate the existence of a fault in either the runtime module or 

the hardware associated with the module. 

Once a fault has been recognized by the above or other means, some form of 

recovery is possible. For software exceptions, the analogue of the RETRY after 

a hardware exception is the idea of computation recovery (also known as backward 

recovery, rollback-and-retry). RETRY enables the program to continue execution 

after discovery of a fault. In this scheme, it is necessary to establish 

recovery points at various locations in the execution of the program. This is 

done by saving selected data or register values at the various points. For 

instance, a core image can be written from memory to backup storage, enabling 

the faulted program to back up and reattempt to execute the procedure(s) 

following the recovery point. Returning to a recovery point also opens the way 

for software reconfiguration, which will be discussed later. The costs incurred 

by computation recovery merit closer analysis since significant space could be 

required for saving the state of the computation at a recovery point and since 

the amount of time spent in retrying the faulted computation sequence could 

possibly dominate the cost of computation. In light of these factors, it would 

be worthwhile to explore cost-saving measures for computation recovery. 
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Instructions that support automatic recovery would be very effective. For 

instance, an instruction that designates a recovery point, REC0VERYP0INT #N, 

when executed would save some suitable image of the computation process in a 

recovery cache. Executing REC0VERYP0INT #N, AddrList would force the current 

contents of the recovery cache, recovery point N-l, into a main or secondary 

backing store, (see Figure 8). An instruction, RECOVER #N, Addr.ist, would 

reload the computation image saved at recovery point N. This would not change 

the recovery cache.  In this way, if RECOVERY needs to be done again, the 

current image is still in cache; if RECOVERY on a prior point is required, the 

recovery cache is changed to reflect the image of that prior poinc and all 

intervening images are destroyed. 

There are several issues that have not been discussed such as what exactly 

is a recovery cache, what happens if there is no recovery point N, <\nd what is a 

"suitable image of the computation process" [33]. They will not be Jiscussed 

here.  It is important to realize that the instructions mentioned are only a few 

of the ones that might be required and many issues in "recovery" have been 

ignored here. With a suitable set of instructions several different recovery 

schemes, e.g., recovery blocks [29], can be more easily and efficiently 

implemented. 

Software reconfiguration is similar in concept to hardware reconfiguration, 

but instead of replacing a faulty unit with a good copy of the unit, it attempts 

to replace a faulty program module with an alternate version of the module's 

function [32]. After fault detection and rollback, alternate versions of the 

re-executed modules may be invoked in place of the originals. From the recovery 

point to the point of program error there may be several different procedures or 

modules. Therefore, there exist several different sequences of originals or 

alternates that could be invoked. A simple strategy is to replace single 

modules by their alternates, testing each time at the point of failure, then 

replacing couples of modules if the fault is still present, etc. Since this 

involves a potentially large number of rollbacks, close attention should be 

paid to the costs sustained by such reconfiguration strat.-gies. The cost of 

programming multiple versions of a function module is also a serious concern 

[29, 34]. 
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I 4.  CONCLUSION 

The objective of this effort was to identify ways in which BIT can be 

integrated into the MIL-STD-1862 architecture very early in the development 

cycle. Since this is a radical departure from the classical approach to 

computer testing, significant original work had to be done to identify error- 

detecting approaches and ways to evaluate their corresponding effectiveness. 

This study led to reporting mechanisms, instruction retry, error recovery 

strategies, and finally to an overview of fault-tolerant software. 

The initial problem was to characterize BIT-detected errors and to compare 

these characteristics to MIL-STD-1862 exceptions and MIL-STD-1862 interrupts. 

Some of the confusion in MIL-STD-1862 was cleared up in this respect. An 

approach for reporting BIT-detected errors to software was identified. The 

recommended reporting mechanism uses the current MIL-STD-1862 interrupt 

facility. This recommendation was based on the similarities between 

MIL-STD-1862 interrupts and BIT-detected errors. This is not to imply they are 

the same -- only that they share many characteristics in common. 

The ability to invoke a software handler upon reciept of a BIT signal led 

to a discussion about the probable actions that might be required after 

correctly handling this type of error. The upshot of this was the recommenda- 

tion that the handler be designed to return to the point in the computation 

process at which the error occurred. This is intimately tied in with the 

required capability to resume an instruction after handling an interrupt. 

Several instructions that explicitly control retry or resumption were discuss- 

ed. 

Looking at BIT-detected errors in a more general context, it is obvious 

that an overall strategy for recovery from BIT-detected errors is mandatory. 

This belief is based on the knowledge that the most common and dangerous fault 

is the transient fault, which appears and just as quickly disappears from the 

system. The proposed comprehensive recovery strategy involves a combination of 

both hardware and software working in concert. 

Nonconcurrent BIT was also considered in this study. The idea of a 

system-wide diagnostic task was presented where each BIT handler was a subtask 

of a larger task. Another subtask of the diagnostic task was that of building, 
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maintaining and querying an "error data base." This error data base is updated 

everytime a BIT detected error  is signaled. This data base can be queried by 

the BIT handlers or other subtasks for information concerning the previous 

history of specific modules and specific BIT eri^rs. With this information an 

intelligent test and recovery strategy can be determined. This data base can 

also be used to correlate information for use by maintenance personnel. One 

strategy that might be proposed based on an analysis of the error data base 

would be to run diagnostics on the system or certain modules. Based on this it 

could be decided to test a module at a deeper level by executing module specific 

test patterns. These patterns would be read into a module and the module's 

response would be compared to some "gold standard." This is a hierarchy of tests 

that can be run from a diagnostic subtask, e.g., a BIT handler, to quickly 

determine if the module can be considered usable. Low-level hardware fault 

tolerance has been suggested using BIT and hardware retry to recover from most 

transient errors. For software exceptions, the analogue of the retry after a 

hardware exception is the idea of computation recovery. This enables the 

program to continue execution after a software exception has been raised. An 

example set of instructions are presented that could be used in a computation 

recovery scheme. The best work so far has been done by Lee [33], who explores 

the entire recovery mechanism in greater detail. 

A great deal of follow-on work needs to be done on both the very practical 

problem areas of developing a comprehensive test plan for the machine implemen- 

tations, as well as looking at extensions to the instruction set in the areas of 

BIT error handlers, rollback-and-recovery, and fault isolation. A comprehensive 

test plan needs to be evolved that addresses: 

1. the effectiveness of vendor's BIT, 

2. the adherence to architectural specification when BIT signals are 

raised, 

3. raising the proper exceptions when the architectural specifications 

are violated, and 

4. testing the exceptional conditions defined by the operating 

system. 
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The instruction set should be studied to determine if further instructions 

could be added that would be useful for: 

1. handling BIT-detected errors, 

2. testing modules for fault  isolation from a system diagnostic task,  and 

3. implementing a comprehensive rollback-and-recovery scheme. 

RTI,   in cooperation with Carnegie-Mellon University personnel,  has 

developed a BIT evaluation tool  using a new ISP fault  injection simulator.     It 

is recommended that this tool  now be applied to candidate MCF embodiments to aid 

the government in creating a maintainable MCF design to minimize future system 

life cycle maintenance costs. 
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Nebul a : = 
BEGIN 
**Machine.State** 
[Processor Status fiord 
Kernel<> := PSW<0>, [Kernel/ User mode 
Last.modeO : = PSW<1>, [Previous context (Kernel/Task) 
Pri<0:4> : = PSW<4:8>, [Processor priority 
CO = PSW<9>, !Carry condition code 
TO = PSW<10>, [Truncate cc 
NO = PSW<11>, (Negative (less) cc 
zo = PSW<12>, [Zero cc 
Debug<0:l> := PSW<13:14>, !Debugging Control 
PrivilegeO : = PSW<15>, [Privileged if set 
Baseo := PSW<16> 9                                                                                * Base of context stack 
SupervO : = PSW<17>, [Supervisor/Task mode 
UDLEO := PSW<18> > Up/Down level exception 
EAEO :=  PSW<19> 9 Exception on Arithmetic Error 
MaxReg<0:3> := PSW<20:23>, [Number of registers in current 
context 

MaxPar<0:7> := PSW<24:31>, [Number of parameters in current 
context 
PC<0:31>, Program Counter 
[Machine State Registers 
Ctxp[0:l]<0:31> := MSR[0:1]<0:31>, [Context Pointers 
Kctxp<0:31> := CtxpCO1 <0:31>, [Kernel 
Tctxp<0:31> := Ctxp[i; <0:31>, [Task 
Soft.int.req<0:31> :=    MSR[2]<0:31>, [Software Interrupt 
Request 
PSW<0:31> := MSR[3]<0 31>, [Processor Status 
Vreg[0:3]<0:31> := MSR[4:7]<0:31>, !SVC and OPEX vector registers 
ASR<0:31> := MSR[8]<0 .31>, [Auxillary Status 
Register 
ICO : = ASR<18>, ! Infinity Control 
MIO = ASR<19>, [Mask for Invalid Operand 
MQO = ASR<20>, [Mask for Division by Zero 

MOO = ASR<21>, [Mask for Overflow 
MUO = ASR<22>, [Mask for Underflow 
MPO = ASR<23>, [Mask for Inexact 
RC<0:1> := ASR<25:26>, [Rounding Control 

I<> ,= ASR<27>, [Floating Pt. Invalid operand 

Q<> ; = ASR<28>, [Floating Pt. Division by Zero 

0<> • ASR<29>, [Floating Pt. Overflow 
UO ; = ASR<30>, [Floating Pt. Underflow 
PO ; = ASR<31>, [Floating Pt. Inexact 

MMre g[o :1]<0:31> : MSR[9: LO ]<0:31>, [Memory management 
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2 
= 3 

4 
= 5 
» 6 
= 7 

registers 
Timctl<0:31> := 
Inttim[0:3]<0:31> 
T0D<0:31> := 
i 

[Exception codes 
i 

Macro Spec.error  : 
Macro 111.Mode 
Macro II1.Param 
Macro II1 .Reg  : 
Macro 111.Write 
Macro 111.Size 
Macro Ill.Addr 
Macro Bad.displacement :=) 8| 
Macro Context.Alignment 
Macro Context.Base  := 
!Arithmetic Group 
Macro II1.Divisor  := 
Macro Truncate  :=   | 17| 
Macro Range.error  := 
Macro 111.Operation  := 
Macro Div.by.Zero 
Macro Overflow := 
Macro Underflow  := 
Macro Inexact := 
Macro Unordered  := 
Macro Task.Failure 
Macro Break   := 
Macro Inst.Trace  : 
Macro Proc.Trace  : 

MSR[11]<0:31>, 
MSR[12:15]<0:31>, 
MSR[16]<0:31>, 

11 

21 
22 
23 
24 

Vectors 

Physical 
Macro 
Macro 
Macro 
Macro 

SI 
PI 
MM 
ME, 

vec 
vec 
vec 
vec 

!,Hard 

[Timer Control Reg 
(Interval timers 
[Time of Day 

32 
33 
34 
35 

Macro    PF.vec :- 
Macro    PR.vec := 
Macro    Kernel.Save := 
Macro    Exception.vec: 
Macro    Priv.error := 
[Macro TimerO.Vec := 
[Macro Timerl.vec := 
IMacro Timer2.Vec := 
IMacro Timer3.Vec := 
!?!The following macros 
!?!size used in the ISP 
!?!Operand Sizes (op.add 
[Note that these are vis 
Macro    Dwrd := | .g« 

"4l , 
"8 , 

"&• 
"10( , 

error "14, 
"18l , 
"1C , 
"2C , 
"24 , 
"28 , 
"30 , 
"34 , 
"38 , 
"3q , 

define the 
implementat 
r<0p.Size>) 
ible as the 

[Software interrupt vector 
[Parameterized Interrupts 
[Memory Management Errors 
!Memory system errors 
Soft error "10 
[Power failure 
[Power restore 
'.Pointer to kernel save area 
[Supervisor exception handler 
[Privileged instruction in user mode 
[Timer 0 Vector 
[Timer 1 Vector 
[Timer 2 Vector 
[Timer 3 Vector 
values of operand type and 
ion. 

size fields of operands. 

!8 bytes 
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Macro    Byte := 
Macro    Hwrd :• 
Macro    Word := 
!?!Operand Types (op. 
Macro    Constant : 
Macro    Context 
Macro    Literal 
Macro    Memory 
Macro    single : 
Macro    double 
ISize converts an operand size into 

01 , 
10 , 
111 . 
addr<0p.Type>) 

' '0C| , 
01 , 
10 , 
11 . 

!1 
!2 
!4 

byte 
bytes 
bytes 

h 

!?!Descriptor IS the operand 
!?!Register or in context stack 
!?!Literal   in code stream 
!?!In Memory 
Isingle size 
IDouble size 

the equivalent number of bytes 
Size(ops<l:0>)<4:0> := 

BEGIN 
DECODE ops => 

BEGIN 
Dwrd := size = 8, 
Byte := size = 1, 
Hwrd := size = 2, 
Word := size = 4 
END 

END, 
!Sign extend a value VAL of size OPS to 64 bits 
sxt(val<63:0>,ops<l:0>)<63:0> := 

BEGIN 
DECODE ops => 

BEGIN 
Dwrd := sxt 
Byte := sxt 
Hwrd := sxt 
Word := sxt 
END 

END, 
Macro Op.type  :=    35 
Macro Op.size  :=    33 
**Memory.Access**  (US) 
Macro MaxMem := | 4095) , 
!Main Memory 
Mb[0:MaxMem]<0:7>, 
Mw[0:MaxMem]<0:31>(increment:  4) 
Md[0:MaxMem]<0:63>(increment: 8) 

I/O Space 

= val, 
<= val<7:0>, 
<= val<15:0>, 
<= val<31:0> 

:34) , 
= 32| , 

Model Dependent 

Mb[0:MaxMem]<0:7>, 
Mb[0:MaxMem]<0:7>, 

!Full I/O space is 20 bits physical 
ISmall amount defined for ISP's purpose 

ALIGNED ADDRESSES as byte, half, word, double 

!MBio["FFF00000:"FFFFFFFF]<0:7>, 
MACRO 10.Min :=   | "FFFFF000J , 
!I/0 space may be accessed on 
MBio[I0.Min:"FFFFFFFFl<0:7>, 
MHio[I0.Min:"FFFFFFFF]<0:15>(increment: 2) := MBio[I0.Min:"FFFFFFFF]<0:7>, 
MWio[10.Min:"FFFFFFFF]<0:31>(increments):= MBio[I0.Min:"FFFFFFFF]<0:7>, 
MDio[10.Min:"FFFFFFFF]<0:63>(increment:8):= MBio[I0.Min:"FFFFFFFF]<0:7>, 
MSR[0:16]<0:31> := MBio["FFFFF800:"FFFFF843]<0:7>, 
[Memory read routine 
read(va<31:0>,ops<l:0>,a<2:0>)<63:0> := 

BEGIN 
DECODE vp(va,a)<0:U> EQL "FFF => 
BEGIN 
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[Memory 
DECODE ops 

BEGIN 
=> 

Dwrd  := read = Mb[vp]@Mb[vp(va+l,a)]@Mb[vp(va+2,a)]@Mb[vp(va +3,a)]<a 
Mb[vp(va+4,a)]@Mb[vp(va+5,a)]@Mb[vp(va+6,a)]@Mb[vp(va+7,a)], 

Byte : = read = Mb[vp], 
Hwrd  := read = Mb[vp]@Mb[vp(va+l,a)], 
Word := read = Mb[vp]PMb[vp(va+l,a)]@Mb[vp(va+2,a)]@Mb[vp(va+3,a)] 

END, 
!I/0 Space 
DECODE ops => 

BEGIN 
Dwrd  := read = MDio[vp], 
Byte  := read = MBio[vp], 
Hwrd  := read = MHio[vp], 
Word  := read = MWio[vp] 

END 
END 
END, 

[Memory write routine 
write(va<31:0>,ops<l:0>,a<2:0>)<63:0> := 

BEGIN 
DECODE vp(va,a)<0:ll> EQL "FFF •> 

BEGIN 
[Memory 
DECODE ops => 

BEüIN 
Dwrd :• Mb 

Mb 
Byte := Mb 
Hwrd :• Mb. 
Word := Mb[vp]@Mb[vp(va+l,a)]@Mb[vp(va+2,a)]@Mb[vp(va+3,a)] = write 

END, 
!I/0 Space 
DECODE ops 

BEGIN 
Dwrd := MDio[vp^ 
Byte := MBio[vp 
Hwrd := MHio[vp_ 
Word := MWio[vp' 

END 
END 
END, 

**Address.Translation**(us) 
Mptr[0:l]<0:31> := MMreq[0:l]<0:31>, 
[Fields in Mptr registers 
MACRO Map.addr := | 1:28J ,       [address of map (bits 29:31 are 0) 
[Bit 29 is reserved 

vp]@Mb[vp(va+l,a)]@Mb[vp(va+2,a)]@Mb[vp(va+3,a)] 
vp(va+4,a)](aMb[vp(va+5,a)]@Mb[vp(va+6,a)](aMb[vp(va+7,a)]=write, 
vp. 
vp. 

Lvp. 

=> 

write, 
@Mb[vp(va+l,a)] = write, 
@Mb[vp(va+l,a)]@Mb[vp(va+2,a)](8Mb[vp(va+3,a)] 

write, 
write, 
write, 
write 

[Map address registers 
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MACRO Map.reloc  := 
MACRO Map.prot   := 
M.ent<0:63>, 
!Map entry fields 
M.privO  : = 
M.bound<0:27>  := 
M.prot<0:2> := 
M.reloc<0:28>  := 
Macro M.Maxp  := 
Seg.Max<0:M.Maxp>, 
M.addr<0:31>, 
!Memory Access  Codes 

3d , I set 
3l| , !set 
Map entry temporary 

if relocation enabled 
if protection enabled 

MACRO M.c := 0 
MACRO M.i := 1 
MACRO M.r := 2 
MACRO M.w := 3 
MACRO M.n := 4 
!Fault error codes 
MACRO Inv.sup := 1 
MACRO Inv.Seg := 2 
MACRO Inv.accs := 3 

M.ent<0>, !Privilege 
M.ent<l:28>,        [Virtual  Address Bound 

M.ent<29:31>,      [Protection Key 
M.ent<32:60>,       [Relocation Amount 

| 4| ,        !Implementation dependent seg.  number size 
[Maximum Seg number temporary 

!Map address temporary 

[Context Access 
!Instruction fetch 
[Memory read 
[Memory read/write 
!No Access 

[Invalid access to supervisor space 
!No Seg containing this address 
[Access type violation 

MACRO Priv.violation ':=       | 4| , 
; 
[Virtual  to physical  Address translation 
i 

vp(va<0:31>,mode<0:2>)<0:31> := 
BEGIN 
vp =  va NEXT 
IF va<0> ANO NOT Superv=> M.fault(Inv.Sup) NEXT [User access to superv 
IF Mptr[Va<0>]<30:31> => Seg.number(va) NEXT 
IF Mptr[Va<0>]<Map.Prot> => [Protection Enabled 

BEGIN 
IF M.Ent<M.priv> AND NOT Privileged M.fault(Priv.Violation)NEXT 
DECODE mode => 

BEGIN 
M.c: =  IF M.prot NEQ 'Oil => M.fault(Inv.aces), 
M.i:=  IF M.prot<0:l> NEQ '10 => M.fault(Inv.accs), 
M.r:=  IF M.prot<l:2> NEQ '01 AND 

M.prot NEQ '010 => M.fault(Inv.accs), 
M.w:=  IF M.prot NEQ '010 => M.fault(Inv.accs), 
M.n:=  No.0p() 

END 
END  NEXT 

DECODE Mptr[Va<0>]<Map.Reloc> => 
BEGIN 

vp<0:4> <=(tc)  va<0> AND va<5:ll> EQL 
vp = va<5:31> + M.relocG'000 

END 
END, 

Seg.number(va<0:31>)<0:M.Maxp> := 
BEGIN 
Seg.number = 0; 
M.addr = Mptr[va<0>]<Map.addr>@'000 NEXT 
Seg.max = Mw[M.addr-4] NEXT 
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=> M.fault(Inv.Seg) 

REPEAT  BEGIN 
M.ent = Md[M.addr] NEXT IGet map entry 
IF va<l:29> LEQ M.bound => LEAVE  Seg.number NEXT 
Seg.number = Seg.number + 1; 
M.addr = M.addr + 8 NEXT 
IF  Seg.number GTR Seg.max 
END 

END, 
M.fault(fcode<0:15>)<0:15>  :• 

BEGIN 
M.fault = fcode; MMf •  1 NEXT      !Set fault 
RESTART Run !And  abort 
END, 

**Context.Stack.Access**    (US) 
! Most of this section is  implementation dependent 
!The context stack contains the context of the currently running process. 
!The top of the stack contains the current process registers. 
[This stack  is restricted to word  (4 byte)  boundaries. 
!?!In most  implementations the top of stack will  be cached  in some way. 
!?!The ISP reflects one very simple mechanism. 
[Context stack read 
Reid.Ctx(disp<31:0>)<31:0> := 

BEGIN 
DECODE disp => 

BEGIN 
0  :=        Read.Ctx = PC, ! PC  is cached  in the ISP 
Otherwise  :=        Read.Ctx = Mw[vp(Ctxp[Kernel] + dispG'OO, M.c)] 
END 

END, 
!  Context Stack Write 
Write.Ctx(0isp<31:0>)<31:0> : = 

BEGIN 
Mw[vp(Ctxp[Kernel] + DispG'OO, 
END, 

Reload.Ctx<31:0> := 
BEGIN 
PC = Mw[vp(Ctxp[kernel],  M.c)] 

M.c)] = Write.Ctx 

NEXT 
Reload.ctx = Mw[vp(Ctxp[Kernel]-4, M.c)] 
END, 

**Call.mechanism**(us) 

Call.switch  implements the procedure call mechanism with parameter passing 

Call.Switch<15>, 
Call.Switch<14>, 
Call.Switch<ll:8>, 
Call.Switch<7:0>, 

P.VarO  : = 
P.ExceptionO : = 
MaxReg.New<3:0> 
MaxPar.New<7:0> 
pcount<31:0>, 
Ctx.size<31:0>, 
Call.switch(addr<31:0>)<15:0> := 

BEGIN 
call.switch = read(addr,Hwrd,M 
addr = addr + 2; 

[Parameter counter temp 
!New context size temp 

i) NEXT Iget procedure descriptor 
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! Save Exception Handler 

!Determine number of parameters 
IF P.Var => ! variable number of parameters? 

BEGIN 
MaxPar.New = get.logO NEXT 
IF get.log GTR 255 => Exceptional .Param) 
END NEXT 

[Determine size of new context 
Ctx.size = Maxpar.new + Maxreg.New + 3 NEXT 
write.ctx("FFFFFFFF) = PSW NEXT       ! Save current PSW 
!Set exception handler for this context 
DECODE P.Exception => 

BEGIN 
0 :•   write.ctx = 0, 
1 :=   BEGIN 

write.ctx = read(addr,Hwrd,M.i) + addr NEXT 
addr = addr + 2 
END 

END NEXT 
write.Ctx("FFFFFFFE) NEXT 
[Evaluate the Parameters 
pcount = 0 NEXT 
loop := REPEAT 

BEGIN 
IF pcount EQL MaxPar.New => LEAVE loop NEXT 
IF op.addr()<op.type> EQL Context =>        !Ref to prior register 

op.addr<31:0> = op.addr<31:0> + Ctx.size NEXT 
Write.ctx(pcount-Maxpar.new-2)=op.addr<35:31>@op.addr<26:0> NEXT 
pcount = pcount + 1 
END NEXT 

Icomplete the control  transfer 
write.ctx(O)  = PC NEXT !  Save current PC 
Scheck existance to -Ctx.size -1  (new PSW storage) 
Ctxp[Kernel]  = Ctxp[Kernel]  - Ctx.size@'00 NEXT    !  Point to new context 
IF MaxReg GTR 0 AND MaxReg.New GTR 0 => ! Copy "SP" 

write.ctx(l)  = read.ctx(Ctx.size+l) NEXT !if both exist 
PC = addr; !  New PC 
PSW<18:31> = Call.Switch; !  New PSW 
Base = 0;  Superv = Superv AND addr<31> 
END, 

Build.stack  initiates a call  stack on the current stack 

descriptor is same format as for Call.stack 
B.exceptionO  :=      Build.stack<14>, 
B.maxreg<3:0> :=      Build.stack<ll:8>, 
Build.stack(inc<31:0>,addr<31:0>,np<7:0>)<15:0> := 

BEGIN 
Build.stack = read(addr.Hwrd.M.i) NEXT 
addr = addr + 2; 
Build.stack<7:0> = np;    '.Number of parameters 
Ctxp[Kernel] * Ctxp[Kernel] -  (B.maxreg + np + 3 
'.install exception handler 

inc)9'00 NEXT 
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DECODE B.exception => 
BEGIN 

write.ctx = 0,  '.none 
BEGIN 

write.clx = read(addr,hwrd,M.i)  + addr NEXT 
addr = eddr + 2 

END 
END  NEXT 

Write.ctx(B.maxreg+np+l) NEXT 
!Set psw 
PSW<18:31> = Build.stack;   Superv  = addr<31>;Debug = 0; 
PC = addr 
END, 

Call.restore removes a context frame from the context stack 

Call.restore  := 
BEGIN 
Ctxp[Kernel]  = Ctxp[Kernel]  + (Maxreg + MaxPar + 3)0'00 NEXT 
DECODE Base => 

BEGIN 
psw<13:31> = Relcad.ctxO, 
BEGIN 

Kernel  = last.mode NEXT 
psw = Reload.ctx() 

END 
END 

END, 

Pop.stack removes an -entire execution stack from the context  stack 

I 

I 
I 

Pop.stack := 
BEGIN 
REPEAT BEGIN 

Ctxp[Kernel] = Ctxp[Kernel] + (Maxreg+MaxPar+3)(3'00 NEXT 
IF Base => LEAVE Pop.stack NEXT 
PSW = Read.ctx("FFFFFFFF) 
END 

END, 
**0perand.Descriptors** (US) 
[Operand descriptor routine 
[Reads an operand specifier from  instruction stream and generates 
!A descriptor specifying  its type,  size,  and address 
op.addr<35:0> := ' 
BEGIN 
**Local.Declarations** 
op.spec<7:0>, [operand specifier 
Parameter(Num<7:0>)<35:0> := 

BEGIN 
IF Num GTR(us) MaxPar => Exception(Il1.param) NEXT 
DECODE Num NEQ 0 => 

BEGIN 
Of :=  parameter = MaxPar, 
It :=  BEGIN 

] 
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I 
I 
I 
I 

Read.Ctx(Num + Maxreg) NEXT 
Parameter = Read.Ctx<31:27>@"0(3Read.Ctx<26:0> 
END 

END 
END, 

op.decode<7:0> := 
BEGIN 
op.spec = read(pc,byte,M.i) NEXT 
pc = pc + 1 NEXT 
DECODE op.spec => 

BEGIN 

'000????? 
'0010???? 

'00110??? 
'001110?? 

'001111?? := 

'?7000000 := 

'??00???? 

OTHERWISE := 

IShort Literal Mode 
op.addr = op.spec,     IConstant 
BEGIN        IRegister Mode 
IF op.spec<3:0> EQL 0 OR op.spec<3:0> GTR Maxreg => 

Exception(Ill.Reg) NEXT 
op.addr = Context?Word(3"0000000@op.spec<3:0> 
END, 

IShort Parameter Mode 
op.addr = parameter(op.spec<2:0>), 
BEGIN        (Recursive Modes (parameter, indexed) 
IF op.decode NEQ 0 => Exception(111.Mode) NEXT 
op.decode = op.spec    ISave for recursive evaluation 
END, 
BEGIN        »Literal Mode 
op.addr = Literal@op.spec<l:0>@pc NEXT 
pc = pc + size(op.spec<l:0>) 
END, 
BEGIN        [Absolute Address 
op.addr= Memory@op.spec<7:6>@read(pc,Word,M.i)<31:0>NEXT 
pc = pc + 4 
END, 
BEGIN        IRegister Indirect 
IF op.spec<3:0> GTR Maxreg => Exception(111.Reg) NEXT 
op.addr = Memory@op.spec<7:6>@Read.Ctx(op.spec<3:0 >) 
END, 
BEGIN        I Indexed Memory Modes 
IF op.spec<3:0> GTR Maxreg => Exception(Ill.Reg) NEXT 
read(pc,op.spec<5:4>,M.i) NEXT I Index 
sxt(read,op.spec<5:4>) NEXT   ISignExtend 
op.addr<35:32> = Memory@op.spec<7:6>; 
op.addr<31:0> = sxt + Read.ctx(op.spec<3:0>) NEXT 
pc = pc + size(op.spec<5:4>) 
END 

END 
END, 

MAIN entry := 
BEGIN 
op.decode = 0 NEXT 
IF op.decodeO EQL 
DECOut op.decodeO 

BEGIN 

0 => LEAVE op.addr NEXT I Non-recursive modes 
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'00111000 

'00111001 

'00111010 := 

'00111011 := 

END 

BEGIN  IParameter 
IF fetch(op.addr,0)<63:8> => Exception(II1.param) NEXT 
op.addr = parameter(fetch) 
END, 
BEGIN  lUnscaled Index 
fetch(op.addr.l) NEXT  !Index 
op.decode() NEXT      !Base 
op.addr<31:0> = op.addr + fetch 
END, 
BEGIN      IScaled  Index Single Length 
fetch(op.addr,l) NEXT      ! Index 
op.decode() NEXT !Base 
op.addr<31:0>=op.addr + fetch*size(op.addr<Op.Size>) 
END, 
BEGIN      IScaled Index Double Length 
fetch(op.addr,l) NEXT 
op.decodeO NEXT 
op.addr<31:0>=op.addr 
END 

!Index 
IBase 
fetch*size(op.addr<0p.Size>)*2 

END 
END, 
**Access.by.Descriptor** 
!fetch operand 
lop.adr - descriptor of operand 
!s - set for sign extend 
fetch(op.adr<35:0>,s<>)<63:0> : 

BEGIN 
DECODE op.adr<0p.type> => 

BEGIN 
Constant:* Fetch = 
Context := Fetch = 
Literal := Fetch = 
Memory := Fetch 
END NEXT 
fetch = sxt(fetch,op.adr<op.size>) 

op.adr<31:0>, 
Read.Ctx(op.adr), 
read(op.adr,op.adr<Op.size>,M.i), 
read(op.adr,op.adr<Op.size>,M.r) 

= > IF s 
END, 

Store(op.adr<35:0>)<63:0> := 
BEGIN 
DECODE op.adr<op.type> => 

BEGIN 
Constant 
Context 
Literal 
Memory 
END 

= Exceptional 1 .write), 
Write. Ctx(op.adr) = store, 
Exceptional 1 .write), 
Write(op.adr,op.adr<op.size>,M.w) = store 

END, 
**0perand.Access** 
Get.int(d<>)<63:0> := 

BEGIN 
op.addrO NEXT 
IF d AND op.addr<op.type> EQL Memory => 

op.addr<op.size> = op.addr<op.size> + 1 NEXT 
get.int = fetch(op.addr.l) 
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END, 
Put.int(dO,repl<>)<63:0> : = 

BEGIN 
IF NOT repl => 

BEGIN 
op.addr() NEXT 
IF d AND op.addr<op.type> EQL Memory => 

op.addr<op.size> = op.addr<op.size> + 1 
END NEXT 

Store(op.addr) = put.int; 
t = (put.int NEQ sxt(put.int,op.addr<op.size>)) NEXT 
n = sxt<63>; 
z = sxt EQL 0 
END, 

Get.loq<31:0> := 
BEGIN 
op.addr() NEXT 
get.log = fetch(op.addr.O) 
END, 

Put.lcg(repl<>)<31:0> : = 
BtGIN 
IF NOT repl => op.addr() NEXT 
store(op.addr) = put.log; 
n = sxt(put.log,op.addr<op.size>)<3l> NEXT 
z = sxt EQL 0 
END, 

Get.float<79:0> := 
BEGIN 
op.addr() NEXT 
IF op.addr<35:32> EQL literal  9 byte => 

BEGIN 
get.float = special.case() NEXT 
LEAVE get.float 
END NEXT 

IF op.addr<op.type> EQL Memory => 
op.addr<op.size> = op.addr<op.size> + 1 NEXT 

Get.float = unpack(fetch(op.addr,0),op.addr<op.size>) 
END, 

special.case<79:0> := 
Begin 
IDecode fetch(Op.Addr.O)  => 
!             Begin 
!             special.case =  ?, 
!             special.case = ? 

I  
! End" 
no.op() 
End, 

Put.float(repl<>)<79:0> := 
BEGIN 
IF NOT repl  => 

BEGIN 
op.addr() NEXT 
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IF op.addr<op.type> EQL Memory => 
op.addr<op.size> = op.addr<op.size> + 1 

END  NEXT 
store(op.addr)  = pack(put.float,op.addr<op.size>) 
END, 

Get.field(pos<31:0>,size<31:0>)<31:0>  : = 
BEGIN(us) 
IF size GTR 32 => exception(ill.size) NEXT 
IF size EQL 0 •> (get.field = 0; LEAVE get.field) NEXT 
op.addr<31:0> = op.addr()<31:0> +(tc) pos<31:3> NEXT   IByte Address 
Memory.Chk() NEXT 
pos = op.addr<l:0>@pos<2:0> NEXT IPosition from word boundary 
size = size + pos -1 NEXT !End bit position 
read = MASK.LEFT(read(op.addr AND "FFFFFFFA,Word+size<5>,M.r), pos) NEXT 
get.field = read SRO (31-size<4:0>) 
END, 

Put.field(pos<31:0>, size<31:0>, repl<>)<31:0> := 
BEGIN(us) 
IF size GTR 32 •> exception(ill.size) NEXT 
IF size EQL 0 => LEAVE put.field NEXT 
put.field = MASK.LEFT(put.field, 32-size); 
IF NOT repl => 

op.addr<31:0> = op.addr()<31:0> +(tc) pos<31:3> NEXT 
Memory.Chk() NEXT 
pos = op.addr<l:0>(3pos<2:0> + size -1 NEXT     [position of end bit 
op.addr<l:0> = 0 NEXT 
read = read(op.addr, Word+pos<5>, M.r) SRR (31-pos) NEXT 
read = MASK.RIGHT(read, size) OR put.field NEXT 
write(op.addr, Word+pos<5>, M.w) = read SLR (31-pos) 
END, 

** Instruction.Interpretation ** (US) 
ir<7:0>, !?!instruction register 
replaceO := ir<0>, ! Result in last operand fetched 
long.branchO    := ir<0>, ! 16 bit branch displacement 
pc.back<31:0>, ! initial PC for fault recovery 
Start := 

BEGIN 
Soft.Int.Req = ASR = Exception = 0; 
!Ctxp = Vreg = MMreg = undefined<3l:0> 
Power.up() NEXT 
Run() 
END, 

Run :=    BEGIN 
Int.ServiceO NEXT 
pc.back = pc; 
ir = read(pc,byte,M.i) NEXT 
pc = pc + 1 NEXT 
IEX() NEXT 
RESTART run 
END, 
REQUIRE. ISP | IEX.ISP| , 

i 

lException handler 
! 

I 
li 
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Exception(ecode<29:0>)<> := 
BEGIN 

DECODE UDLE AND NOT Exception => 
BEGIN 
0:=   BEGIN   lllpward to calling routines 

PC = read.ctx(maxreg+MaxPar+l) NEXT    !Get specified handler 
IF PC NEQ 0 =>       !If handler exists 

BEGIN 
Write.ctx(maxreg+MaxPar+l) = ecode;    Isave code 
LEAVE lex 

END NEXT 
IF NOT Base =>       !No handler but caller exists 

BEGIN 
Call.restore(); 
RESTART Exception     !Try the caller 

END NEXT 
!No handler and bottom of stack 
Sup.eh(maxreg+MaxPar+3,Task.Failure) NEXT 
Base = 1      !This is all that's left 

END, 
1:=   Sup.eh(0,ecode)  !Down to the supervisor 
END NEXT 
LEAVE lex 

END, 
Sup.eh(soff<0:31>,ecode<29:0>) := !Entry to supervisor exception handler 

BEGIN 
Write.ctx("FFFFFFFF) • PSW NEXT 
Write.ctx(O) = PC NEXT 
Superv = 1 NEXT 
Build.Stack(soff,Mw[Exception.vec]<0:29>@'00,3) NEXT 
Privilege = Mw[exception.vec]<31>; 
Write.ctx(Maxreg+l) = ecode NEXT 
Write.ctx(Maxreg+2) = Memory@Byte@pc.back<0>(3pc.back<5:31> NEXT 
Write.ctx(Maxreg+3) = Context@(Maxreg+maxpar+3)<29:0> 
END, 

OPEX := !Unimplemented opcode handler 
BEGIN 

vector.cal1(0,ir) 
END, 
Vector.call(b<>,index<15:0>)<31:0> := 
BEGIN 

DECODE index LSS Vreg[b<3'0]<0:15> => 
BEGIN 
Of :=  index = index - Vreg[b@'0]<0:15>, 
It :=  index = 0 
END NEXT 
IF index GTR Vreg[b0'O]<16:31> => index • 0; 
superv = privilege = 1 NEXT   'Full privilege for vector access 
Vector.call = Mw[vp( Vreg[b0'l] + indexP'OO, M.r)] NEXT 
Call.switch(vector.cal1<31:2>@'00) NEXT 
Privilege • Vector.cal1<0>; Debug = 0 

END, 
Fp.exception(ecode<4:0>) := 
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OECODE ASR<ecode> •> 
BEGIN 
0 : = 

DECODE  EAE => 
BEGIN 
t =  1, 
exception(ecode) 
END, 

1 := ASR<ecode +(US)  8>  = 1 
END 

END, 
** I interrupt. Service** (us) 
!?!A device may request an interrupt by storing its vector location 
!?!in Ext.vec and setting the appropriate bit of Ext.int.vec. Note 
!?!that this IMPLEMENTATION is for the convenience of the ISP and should 
!?!not be taken literally 
Ext.int.req<0:31>,       !?!External interrupt request 
Ext.vec[0:31]<0:31>, !?!External interrupt vector 
!?!The following are set by the memory system when errors occur. 
!?!A soft error will set these only if enabled in the ASR 
!?!control register is set 
MER<0:31>, !?!Addre_,s of failed memory location 
HMEO, !?!Set if hard memory error 
MMfo :=  lnt.service<0>, !?[Memory Management Fault 
Mem.errO :=     Int.service<l>, !?!Memory system hard or soft error 
Pwr.failO :=    Int.service<2>, !?!Power failure 
Rp.tmp<0:5>,     !Temp for priority 
Int.Service<0:2> := 

BEGIN 
[Internal interrupts 
IF Int.Service => 

DECODE first.one(Int.Service) => 
BEGIN 
0:= BEGIN     [Memory management fault 

MMf = 0; trap(MM.vec,4) NEXT 
!Fi11 in parameters 
Write.ctx(Maxreg+l) = Memory@Byte?vp<31>@vp<26: 0>NEXT 
Write.ctx(Maxreg+2) = Memory@Byte@PC.back<31>@ 

pc.back<26:0> NEXT 
Write.ctx(Maxreg+3) = seg.number NEXT  [Segment number 
Write.ctx(Maxreg+4) = M.fault        IFault code 

END, 
1:= BEGIN     !Memory error 

Mem.err = 0; trap(ME.vec+HME@'00,l) NEXT 
Write.ctx(Maxreg+l) = MER<27:0> 

END, 
2:= BEGIN     IPower fail 

pwr.fail = 0; 
!?!Implementation shall flush all caches at this point 
Mer = Mw[Kernel.save] NEXT 
Mw[Mer] = Kctxp<0:30>@Kernel;   ISave kernel context 
Mw[Mer+4] = Mptr[l];   land supervisor map pointer 
Trap(PF.vec.D) NEXT 
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Pri = "IF     [Priority to maximum 
END 

END NEXT 
[External Interrupts 
Rp.tmp = last.one(mask.left(Ext.int.req OR Soft.int.req,Pri+l)) NEXT 
IF Rp.tmp EQL 32 => LEAVE Int.service NEXT 
Rp.tmp = 31 - Rp.tmp NEXT  [Convert to request priority 
DECODE last.one(Ext.int.req) LEQ last.one(Soft.int.req) => 

BEGIN 
BEGIN  [Software interrupt 
Soft.Int.req<Rp.tmp> = 0; 
trap(SI.vec.l) NEXT 
Write.ctx(Maxreg+l) = Rp.tmp 
END, 
BEGIN  (External Interrupt 
Ext.int.req<Rp.tmp> = 0; 
DECODE Mw[Ext,vec[Rp.tmp]]<0> => 

BEGIN 
1:= trap(Ext.vec[Rp.tmp],0), [Just vector to it 
0:= BEGIN  [Parameterized Handler 
trap(PI.vec.l) NEXT 
IF Maxreg=> write.ctx(maxreg+l)=Mw[Ext.vec[Rp.tmp]] 

END 
END 

Of : = 

It : = 

[Raise priority 

END 
END NEXT 

Pri = Rp.tmp 
END, 

trap(vec<0:31>,nparms<0:7>) := 
BEGIN 
Write.ctx(O) = PC NEXT 
Write.ctx("FFFFFFFF) = PSW NEXT 
last.mode = Kernel NEXT 
Kernel = 1 NExT 
build.stack(0,Mw[vec],nparms) NEXT 
Base ' 
END, 

Power.up 
BEGIN 
Mer 

1 

Mw[Kernel.save] NEXT 
Kctxp = Mw[Mer] AND "FFFFFFFC; Kernel • Mw[Mer]<31>; 
Mptr[l] = Mw[Mer+4]; 
Trap(Mw[PR.vec],0) NEXT 
Pri = "IF 
END, 

** Instructions ** (TC) 
tmp<31:0>, 
tmpl<31:0>, 
tmp2<31:0>, 
tmp.d<63:0>, 
tmp.to, 

Privilege.chk := 
BEGIN 

! global single precision temporaries 

qlobal double precision temporary 
temporary for truncate info 
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BEGIN 
write.ctx("FFFFFFFF) • PSW NEXT 
write.ctx(O) = pc.back NEXT 
superv = 1 NEXT 
bui1d.stack(0,Mw[priv.error],1) NEXT 
write.ctx(maxreg+l) = Memory@Byte@pc.back<31>@pc.back<2 6:0> 

END 
END, 

Memory.Chk := 
BEGIN 
IF op.addr<Op.Type> NEQ Memory => Exception(II1.addr) 
END, 

! integer add 
ADD.ex:= 

BEGIN 
tmp • get.int(single) NEXT !get first operand 
c@put.int(sinqle,replace) = get.int(single)+tmp 
END, 

! integer subtract 
SUB.ex:= 

BEGIN 
tmp = get.int(si igle) NEXT    !get minuend 
c@put.int(single,replace)  = get.int(single) + NOT tmp +(US)   1 
END, 

!   integer multiply single precision 
MUL.ex:= 

BEGIN 
tmp = get.int(single) NEXT !  get first operand 
put.int(single,replace)  = get.int(single)*tmp 
END, 

!   integer divide single precision without remainder 
DIV.ex:= 

BEGIN 
tmp = get.int(single) NEXT ! get first operand 
IF tmp EQL 0 => Exception(111.Divisor) NEXT 
put.int(single,replace) = get.int(single)/tmp 
END, 

! integer negate 
NEG.ex:= 

BEGIN 
c@put.int(single,replace)  = NOT get.int(single)  +(US)  1 
END, 

!   logical  NOT 
N0T.ex:= 

BEGIN 
put.log(rei lace)  = NOT get.logO 
END, 

!   integer remainder B over A 
REM.ex:= 

BEGIN 
tmpl   = get.int(single) NEXT 
IF tmpl EQL 0 •) Exception(111.Divisor) NEXT 
put.int(single.O) = get.int(single) MOD tmpl 

:! 
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END, 
! integer modulus 
M0D.ex:= 

BEGIN 
tmpl   = get.int(single) NEXT 
IF tmpl EQL 0 => Exception(II1.Divisor) NEXT 
put.int = get.int(single) MOD tmpl NEXT 
IF get.int<31> XOR tmpl<31> => put.int = put.int + tmpl NEXT 
put.int(single.O) 
END, 

! integer multiply double precision 
EMUL.ex:=    . ! extended integer multiply 

BEGIN 
tmp = get.int(single) NEXT 
put.int(double.O) = get.int(single)*tmp 
END, 

! integer divide double precision with remainder 
EDIV.ex:= ! extended integer divide (with remainder) 

BEGIN 
tmp = get.int(single) NEXT !  get divisor 
IF tmp EQL 0 => Exception(II1.Divisor) NEXT 
tmp.d = get.int(double) NEXT 
put.int(single.O)  = tmp.d MOD tmp NEXT    !   compute rem(B/A) 
tmp.t = t NEXT 
put.int(double,0) = tmp.d/tmp NEXT \  compute B/A 
t = t OR tmp.t OR ( tmp.d<63> AND tmp<31> AND put.int<63>) 

' END, 
integer increment and decrement by fixed constants 

R = R + nnn 
R = R - nnn 

INC.ex := (put.int(single.l) 
INC2.ex := (put.int(single.l) 
INC4.ex := (put.int(single,l) = get.int(single) 
INC8.ex := (put.int(single.l) = get.int(single) 
DEC.ex := (put.int(single.l) = get.int(single) 
! integer add single precision with carry in 
ADDC.ex:= ! R = B + A + carry 

BEGIN 
tmp = get.int(single) NEXT 
c@put.int(single,0) = get.int(single) + tmp + (US)c 
END, 

! integer subtract single precision with carry in 
SUBC.ex:= ! R = B + (NOT A) 

BEGIN 
tmp = get.int(single) NEXT    ! get A 
c@put.int(single,0) = get.int(single) + (NOT tmp) + (us)c 
END, 

! sign extended move 
M0V.ex:= (put.int(single.O) = get.int(single)), 
! integer compare A with B 
CMP.ex:= ! integer compare A with B 

BEGIN 
tmpl   = get.int(single) NEXT 
tmp2   = get.int(single) NEXT 

= get.int(single) 
= get.int(jingle) 

1),    ! 
2),    ! 
4),    ! 
8), 
"FFFFFFFF), 

increment by 1 
increment by 2 
increment by 4 

+ carry 
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tmpl 
tmp2 

get variable 
get 1st bound 
get 2nd bound 

get variable 
get 1st bound 
get 2nd bound 

z = tmpl EQL tmp2; 
n = tmpl LSS tmp2; 
t = 0 
END, 

! integer compare within bounds 
CMPWB.ex:= ! compare integer tmp with bounds A and 

BEGIN 
tmp = get.int(single) NEXT 

= get.int(single) NEXT 
= get.int(single) NEXT 

z = tmp GEQ tmpl AND tmp LEQ tmp2; 
n = tmp LSS tmpl; 
t = 0 
END, 

! range check 
RANGE.ex := 

BEGIN 
tmp = get.int(single) NEXT 
tmpl        = get.int(single) NEXT 
tmp2        = get.int(single) NEXT 
IF tmp LSS tmpl OR tmp GTR tmp2 => 

except ion(Range.error) 
END, 

!   integer compare A with ZERO 
TEST.ex:= !  compare A with 0, 

BEGIN 
get.int(single) NEXT 
z = get.int EQL 0; 
n = get.int LSS 0; 
t = 0 
END, 

ABS.ex:= 
BEGIN 
IF get.int(single)<0> => get.int = NOT get.int + 1 NEXT 
put.int(single,0) = get.int 
END, 

EQL.ex:= 
BEGIN 
put.log(O) <= z 
END, 

NEQ.ex:= 
BEGIN 
put.log(O) <= NOT z 
END, 

LSS.ex:= 
BEGIN 
put.log(O) <= n 
END, 

GTR.ex:= 
BEGIN 
put.log(O) <= NOT (n OR z) 
END, 

LEQ.ex:= 
BEGIN 
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put.log(O) <= n OR z 
END, 

GEQ.ex:= 
BEGIN 
put.log(O) <• NOT n 
END, 

! arithmetic shift left and right single precision 
ASH.ex:= 

BEGIN 
tmpl = get.int(single) NEXT 
tmp2 = get.int(single) NEXT 
DECODE tmpl<31:5> => 

BEGIN 
"OOOOOOO := 

! R= B shifted | A| bit positions 
! R = R shifted | A| bit positions 
! if A >= 0:  LEFT shift with zero fill 
! if A < 0: RIGHT shift with sign fill 
! t = 1 if sign changes during shift 

! get shift specifier 
! get source sign extend 

"7FFFFFF := 

OTHERWISE := 

END 

BEGIN 
put.int(single.O) <= tmp2 SLO tmpl NEXT 
t = t OR tmp2 NEQ (put.int SRD tmpl) 
END, 
BEGIN 
put.int(single.O) = tmp2 SRD (NOT tmpl + 1) 
END, 

DECODE tmpl<31> => 
BEGIN 
0:=    BEGIN 

put.int(single,0) = 0; 
t = tmp2 NEQ 0 
END, 

1:=    BEGIN 
put.int(single.O) <= tmp2<31>; 
t = 0 
END 

END 

END, 
! logical AND single precision 
AND.ex:= 

BEGIN 
tmp = get.logO NEXT 
put.log(replace) = get.logO AND tmp 
END, 

!   logical OR single precision 
OR.ex:= 

BEGIN 
tmp = get.logO NEXT 
put. log (replace) = get.logO OR tmp 
END, 

!   logical XOR single precision 
X0R.ex:= 

BEGIN 
tmp = get.logO NEXT 
put.log(O) = get.logO XOR tmp 
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END, 
! rotate 
ROT.ex := 

BEGIN 
tmpl = 
tmp2 = 
DECODE 

get.int(single) NEXT 
get.int(single) NEXT 
tmpl<31> => 

BEGIN 
DECODE op.addr<op.size> => 

BEGIN 
Dwrd 
Byte 
Hwrd 
Word 
END, 

DECODE op 
BEGIN 
Dwrd 
Byte 
Hwrd 
Word 
END 

END 
END, 

! Logical 
LSH.ex := 

BEGIN 
tmpl = 
tmp2 = 
DECODE 

:= put.log(O) 
:= put.log(O) 
:= put.log(O) 
:• put.log(O) 

UNDEFINED!), 
tmp2<7:0> SLR tmpl<4:0>, 
tmp2<15:0> SLR tmpl<4:0>, 
tmp2<31:0> SLR tmpl<4:0> 

addr<op.size> => 

put.log(O) 
put.log(O) 
put.log(O) 
put.log(O) 

UNDEFINEDO, 
tmp2<7:0> SRR (-tmpl)<4:0>, 
tmp2<15:0> SRR (-tmpl)<4:0>, 
tmp2<31:0> SRR (-tmpl)<4:0> 

Shift 

get.int(single) NEXT 
get.log() NEXT 
tmpl<31:5> => 

BEGIN 
"OOOOOOO  := put. 
"7FFFFFF   := put, 
OTHERWISE  :=        put, 
END 

END, 
!   logical move 
MOVL.ex:=  (put.log(O)  = get.loc 
EXCH.ex  := 

BEGIN 
tmp = get.logO NEXT 
tmp.d = op.addr NEXT 
put.log(l)  = get.logO NEXT 
store(tmp.d) = get.log NEXT 
put.log(l)  = tmp 
END, 

M0VA.ex:= 
BEGIN 
cp.addrO NEXT 
Memory.Chk() NEXT 
put.log(O)  = op.addr 
END, 

M0VBK.ex:=  !Move Block 
BEGIN 

, log(O)  = tmp2 SLO tmpl, 
,log(0)  = tmp2 SRO (NOT tmpl + 
.log(O)  = 0 

1), 

!get A 
!save location of A 
Iget B and insure writable 
Iwrite B into A 
IWrite A into B 
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tmp = get.int(single) NEXT 
op.addr() NEXT 
Memory.Chk() NEXT 
tmp.d = op.addr<31:0> NEXT 
op.addr() NEXT 
Memory.Chk()  NEXT 
DECODE tmp.d<31:0> GTR(US)  op.addr<31:0> => 

BEGIN 
0 :=        BEGIN !  start from the end 

tmp.d<31:0> = tmp.d<31:0> +(US)  tmp; 
op.addr<31:0> = op.addr<31:0> +(US)  tmp NEXT 
Repeat    BEGIN 

IF tmp EQL(US)  0 => LEAVE movbk.ex NEXT 
store(op.addr)  =- read(tmp.d<31:0>,op.addr<op.size>,M.r) NEXT 
tmp = tmp -(US)  1; 
tmp.d = tmp.d -(US)  1; 
op.addr<31:0> = op.addr<31:0> -(US)  1 
END Imovbkb.loop 

END,        "decode case 0 
1 :=        Repeat    BEGIN      !  normal  direction 

IF tmp EQL(US)  0 => LEAVE movbk.ex NEXT 
store(op.addr)  = read(tmp.d<31:0>,op.addr<op.size>,M.r) NEXT 
tmp = tmp -(US)  1; 
tmp.d = tmp.d +(US)  1; 
op.addr<31:0> = op.addr<31:0> +(US)  1 
END, 

END  [decode 
END, 

MOVM.ex:= 
BEGIN 
tmp = get.int(single) NEXT 
get.log()  NEXT 
op.addr() NEXT 
Memory.Chk() NEXT 
Repeat    BEGIN 

IF tmp EQL 0 => LEAVE movm.ex NEXT 
store(op.addr) = get.log NEXT 
tmp = tmp -(US)  1; 
op.addr<31:0> = op.addr<31:0> +(US)  1 
END 

END, 
!  logical compare zero extended 
CMPU.ex:* 

BEGIN 
tmpl = get.log() NEXT 
tmp2 = get.log() NEXT 
z = tmpl EQL tmp2; I A=B 
n = tmpl LSS(US)  tmp2; I A<B 
t = 0 
END, 

!  clear operand and condition codes 
CLR.ex:» 

BEGIN 
put.log(O) • 0 !  clear operand 
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1 
END, 

JUMP.ex:= 
BEGIN 
op.addr() NEXT 
Memory.Chk()  NEXT 
PC = op.addr 
END, 

Floating Point Instructions 
IFloating arithmetic operators REQUIRE. ISP | FLOAT. ISP) . 

!  floating  add 
addf.ex  := 

BEGIN 
ftmp = get.float() NEXT 
fact = get.float() NEXT 
float.add() NEXT 
put.float(replace)  = ftmp 

END, 
!  floating subtract 

subf.ex := 
BEGIN 

fact = get.float() NEXT 
ftmp = get.float() NEXT 
fact<s> = NOT fact<s> NEXT 
float.add() NEXT 
put.float(replace)  = ftmp 

END, 
!    Floating Multiply 
MULF.ex     := 

BEGIN 
ftmp = get.float() NEXT 
fact = get.float() NEXT 
float.mult() NEXT 
put.float(replace)  = ftmp 
END, 

!    Floating Divide 
DIVF.ex    := 

BEGIN 
fact = get.float() NEXT 
ftmp = get.float() NEXT 
float.div() NEXT 
put.float(replace)  = ftmp 
END, 

!    Negate Floating 
NEGF.ex    := 

BEGIN 
get.float() NEXT 
put.float(replace)  = NOT get.float<70> @ get.float<69:0> 
END, 

!    Convert  integer to floating 
FLOAT.ex    := 

BEGIN 
tmpl = get.int(O) NEXT 
put.float(O)  = int2float(tmpl) 
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END, 
! Convert floating to integer 
FIX.ex := 

BEGIN 
fact = get.float() NEXT 
DECODE (fact<e> EQL "7FF) AND (fact<f> NEQ 0) => 

BEGIN 
0 : = 

BEGIN 
t = 0 NEXT 
float2int(fact) NEXT 
DECODE t => 

BEGIN 
0 := put.int(single,0) = float2int, 
1 : = 

BEGIN 
put.int(single,0) = float2int NEXT 
t = 1 
END 

END 
END, 

1 :- 
BEtIN 
put.int(single,l) = get.int(si'ngle) NEXT 
fp.exception(I11.Operation) 
END 

END -M 
END, 

!    Move floating 
MOVF.ex    := 

BEGIN 
put.float(O)  = get.float() 
END, 

!    Clear floating 
CLRF.ex    := 

BEGIN 
put.float(O)  = 0 
END, 

!    Compare floating 
CMPF.ex    := 

BEGIN 
ftmp = get.float() NEXT 
fact = get.float() NEXT 
float.cmp() 
END, 

!    öquare Root floating 
SQRTF.ex    := 

BEGIN 
fact = get.float() NEXT 
put.float(O)  = fp.sqrt(fact) 
END, 

!    Absolute value floating 
ABSF.ex    :» 

BEGIN 
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put.float(O)  = 0 @ get.float()<69:0> 
END, 

!    Round floating to integer value 
RNOl.ex     := 

BEGTN 
fact = get.float() NEXT 
put.float(O)  = rnd2int(fact) 
END, 

!    Floating Remainder 
REMF.ex    := 

BEGIN 
fact = get.float() NEXT 
ftmp = get.float()  NEXT 
fp.rem() NEXT 
put.float(O)  = ftmp 
END, 

branch(condition<>)<l:0>  := Icommon branch routine 
BEGIN 
branch = long.branch +(US) 1 NEXT !Size of displacement 
DECODE condition => 

BEGIN 
pc = pc •• size(branch),       !N0 branch 
pc = pc + sxt(read(pc,branch,M.i),branch) 
END 

END, 
!Unconditional Branch 
BR.ex := (branch(l)), 
[Branch on equal 
BEQL.ex := (branch(z)), 
!Branch not equal 
BNEQ.ex := (branch(NOT z)), 
!Branch less or equal 
BLEQ.ex := (branch( z OR n)), 
!Branch on less 
BLSS.ex := (branch(n)), 

BEGIN 
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BLSS.ex := (branch(n)), 
!Branch greater or equal 
BGEQ.ex := (branch(NOT n)), 
!Branch greater than , 
BGTR.ex := (branch(NOT (n or z))), 
!Branch if carry set 
BCS.ex := (branch(c)), 
!Branch if carry clear 
BCC.ex := (branch(NOT c)), 
!Branch if truncate set 
BTS.e\ := (branch(t)), 
!Branch if truncate clear 
BTC.ex := (branch(NOT t)), 
CASE.ex:= 

BEGIN 
tmp = get.int(single) NEXT 
tmp = tmp - get.int(single) NEXT 
DECODE tmp LSS(US) get.int(single) => 

BEGIN 

0 
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pc = pc + (get.int * 2),      !Sel exceeds Num - 1 
pc = pc + sxt(read(pc + (tmp * 2),Hwrd,M.i),Hwrd) 
END 

END, 
LOOP.ex:= 

BEGIN 
tmp = get.int(single) NEXT    Iget increment 
put.int(single,l) • get.int(single) + tmp NEXT !add to counter 
get.int(single) NEXT   Iget limit 
long.branch = 1 NEXT 
branch(((tmp GEQ 0) AND (put.int LEQ get.int)) OR 

((tmp LSS 0) AND (put.int GEQ get.int))) 
END, 

ENTLP.ex:= 
BEGIN 
tmp = get.int(single) NEXT    Iget initial counter 
pc = pc + sxt(read(pc,Hwrd,M.i),Hwrd) NEXT Iget disp to loop control 
DECODE read(pc,byte,M.i) => 

BEGIN 
"27:=  BEGIN ! LOOP 

pc = pc + 1 NEXT 
get.int(single) NEXT   Iget increment 
store(op.addr()) = tmp NEXT    I load counter 
tmp = get.int NEXT    I save increment 
get.int(single) NEXT   Iget limit 
long.branch = 1 NEXT 
branch(((tmp GEQ 0) AND (store LEQ get.int)) OR 

((tmp LSS 0) AND (store GEQ get.int))) 
END, 

"2D:=  BEGIN 
pc = pc + 1 NEXT 
store(op.addr()) = tmp NEXT 
get.int(single) NEXT 
long.branch = 1 NEXT 
branch(store LEQ get.int) 
END, 

"29:=  BEGIN 
pc = pc + 1 NEXT 
store(op.addr()) = tmp NEXT 
get.int(single) NEXT 
long.branch = 1 NEXT 
branch(store LSS get.int) 
END, 

"2B:=  BEGIN 
pc = pc + 1 NEXT 
store(op.addr()) = tmp NEXT 
get.int(single) NEXT 
long.branch = 1 NEXT 
branchCstore GEQ get.int) 
END, 

M2F:=  BEGIN 
pc = pc + 1 NEXT 
store(op.addr()) * tmp NEXT 
get.int(single) NEXT 

- 

! IBLEQ 

I load counter 
Iget limit 

I IBLSS 

I load counter 
Iget limit 

I DBGEQ 

I load counter 
Iget limit 

! DBGTR 

I load counter 
Iget limit 
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! increment counter 

long.branch = 1 NEXT 
branch(store GTR get.int) 
END, 

OTHERWISE:= (exception(Bad.Displacement)) 
END !of DECODE 

END, 
IBLEQ.ex:= 

BEGIN 
store(op.addr) = get.int(sintjle) + 1 NEXT 
get.int(single) NEXT !get limit 
long.branch = 1 NEXT 
branch(store LEO get.int) 
END, 

IBLSS.ex:= 
BEGIN 
store(op.addr) = get.int(single) + 1 NEXT     !increment counter 
get.int(single) NEXT iget limit 
long.branch = 1 NEXT 
branch(store LSS get.int) 
END, 

DBGEQ.ex:* 
BEGIN 
store(op.addr) = get.int(single) - 1 NEXT     !increment counter 
get.int(single) NEXT !get limit 
long.branch = 1 NEXT 
branch(store GEQ get.int) 
END, 

DBGTR.ex:= 
BEGIN 
store(op.addr) = get.int(single) - 1 NEXT     Mncrement counter 
get.int(single) NEXT !get limit 
long.branch = 1 NEXT 
branch(store GTR get.int) 
END, 

CALL.ex :=       !Procedure call 
BEGIN 
op.addr() NEXT 
op.addr<30:31> = 0; 
Memory.Chk() NEXT 
call.switch(op.addr) NEXT 
IF ir<0> => Privilege = 0 
END, 

SVC.ex : = 
BEGIN 
get.log() NEXT 
vector.call(l,get.log) 
END, 

JSR.ex:= 
BEGIN 
op.addr() NEXT 
Memory.Chk() NEXT 
Write.Ctx(l) = Read.Ctx(l) - 4 NEXT    !SP <- SP-4 
write(Write.Ctx,Word,M.w) = pc NEXT 
pc = op.addr<31:0> 
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END, 
RSR.ex:= 

BEGIN 
pc = read(Read.Ctx(l),Word,M.r) NEXT 
Write.Ctx(l)  = Read.Ctx + 4 
END, 

RET.ex  := 
BEGIN 

| call.restore() 
1 END, 

ERET.ex  := 
BEGIN 
UDLE = 0; Write.ctx(maxreg+MaxPar+l)  = 0 NEXT 
get.logO NEXT 
Exception(get.log) 
END, 

ERP.ex  := 
BEGIN 
DECODE Base => 

BEGIN 
BEGIN  IThere is a caller 

Get.logO NEXT 
Call.restoreO NEXT 
Exception(get.log) = 1    ! force to user handler 

END, 
exception(Context..base) !no caller 

END 
END, 

RAISE.ex:= 
BEGIN 
exception(get.log()) 
END, 

ECODE.ex := 
BEGIN 
Put.log(O) = Read.ctx(maxreg+MaxPar+l) NEXT 
Write.ctx(maxreg+MaxPar+l) = 0 
END, 

EXCEPT.ex := 
BEGIN 
op.addr() NEXT 
Memory.Chk() NEXT 
Write.ctx(maxreg+MaxPar+l)  = op.addr 
END, 

LPSW.ex  := 
BEGIN 
Privilege.ChkO Next 
IF Base => exception(Context.Base) NEXT 
Write.ctx(Maxreg+Maxpar+3) = get.logO 
END, 

SPSW.ex :* 
BEGIN 
Privilege.ChkO Next 
IF Base •> exception!Context.Base) NEXT 
put.log(O) • Read.ctx(Maxreg+Maxpar+3) 

• 
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END, 
BREAK.ex := 

BEGIN 
Sup.eh(0,Break) 
END, 

NOP.ex:= 
BEGIN 
NO.OPO 
END, 

LTASK.ex := 
BEGIN 
Privilege.Chk() Next 
Get.int(double) NEXT 
IF get.int<33:32> => exception(Context.Alignment); 
IF get.int<l:0> EQL '10 => exception(spec.error) NEXT 
Tctxp = get.int<63:32>; 
Mptr[0] = get.int<31:0> 
END, 

STASK.ex := 
BEGIN 
Privilege.Chk() Next 
put.intfdouble.O) = Tctxp(3Mptr[0] 
!Flush task context to memory 
END, 

TSTART.ex := 
BEGIN 
Privilege.Chk() Next 
Write.ctx("FFFFFFFF) = PSW NEXT 
Write.ctx(O) = PC NEXT 
IF get.log()<31:l> NEQ 0 => exception(spec.error) NEXT 
IF ir<0> => pop.stack() NEXT 
Kernel = get.log<0> NEXT 
PC = read.ctx(O) NEXT 
PSW = read.ctx("FFFFFFFF) 
END, 

TRAISE.ex := 
BEGIN 
get.log() NEXT 
Tstart.ex() NEXT 
PC.back = pc NEXT 
Exception(get.log) 
END, 

TINIT.ex := 
BEGIN 
Privilege.Chk() Next 
Write.ctx("FFFFFFFF) = PSW NEXT 
Write.ctx(O) = PC NEXT 
PC = get.log() NEXT 
get.lögO NEXT Iget process half of psw 
IF ir<0> => pop.stack() NEXT 
PSW<0:15> = get.log; 
Kernel = NOT Kernel NEXT 
Build.stack(0,PC,0) NEXT 
Base = 1 

I 
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END, 
SBF.ex:= 

BEGIN 
tmp = get.logO NEXT   Iget source 
tmpl = get.int(single) NEXT    Iget position 
put.field(ttnpl,get.1og(),0) = tmp 
END, 

LBFS.ex:=       ILoad Bit Field (Sign extended) 
BEGIN(US) 
tmp = get.int(single) NEXT    Iget position 
get.field(tmp,get.logO) NEXT 
put.int(single,0)  -  ((get.field SLO (32- get.log)) SRD (32- get.log)) 
END, 

LBF.ex:= ILoad Bit Field 
BEGIN 
tmp = get.int(single) NEXT    Iget position 
put.log(O) = get.field(tmp,get.logO) 
END, 

SETBIT.ex:= 
BEGIN 
[Operation is interlocked (read-modify-write) 
n = get.field(get.int(single),l) NEXT 
put.field(get.int,l,0) = 1 NEXT 
z = NOT n; 
t = 0 
END, 

CLRBIT.ex:= 
BEGIN 
lOperation is interlocked (read-modify-write) 
n = get.field(get.int(single),l) NEXT 
put.field(get.int,l,0) = 0 NEXT 
z = NOT n; 
t = 0 
END, 

INVBIT.ex:= 
BEGIN 
lOrceration is interlocked (read-modify-write) 
n = get.field(get.int(single),l) NEXT 
put.field(get.int,l,0) = z = NOT n; 
t = 0 
END, 

TSTBIT.ex:= '.Test Bit 
BEGIN 
n » get.field(get.int(single),l)<0> NEXT 
z = NOT n; 
t = 0 
END, 

PUSH.ex:»       I push onto sp stack 
BEGIN 
IF maxreg EQL 0 *> exceptional 1 .reg) NEXT 
•riU.CU(l) - read.ctx(l) - 4 NEXT 
•r't»f*r1te.ctx,word,M.w) = get.logO 

"*. 
[pop from sp stack 



BEGIN 
IF maxreg EQL 0 => exceptional 1 .reg) NEXT 
put.log(O)  = read(read.ctx(l),word,M.r) NEXT 
write.ctx(l)  = read.ctx + 4 
END, 

MTS.ex:= !Move To Stack 
BEGIN 
tmpl  • get.log() NEXT 
tmp = op.addr<op.size> NEXT 
store = get.logO  - size(tmp) NEXT Icompute new S but don't store 
write(store,tmp,M.w)   = tmpl  NEXT 
store(op.addr) !store S now 
END, 

MFS.ex:= IMove From Stack 
BEGIN 
tmp =  get.logO NEXT 
tmp.d = op.addr NEXT        I save addr of S 
tmpl = op.addr()<op.size> NEXT    Iget size A 
put.log(l) = read(tmp,tmpl,M.r) NEXT   Istore A 
store(tmp.d) = tmp + size(tmpl)       Istore new S 
END, 

ILIST.ex:=       llnsert in doubly linked LIST 
BEGIN 
tmp = op.addr() NEXT   Iget entry address (E) 
Memory.Chk() NEXT 
tmpl = op.addr() NEXT  Iget address of entry to insert after (P) 
Memory.Chk() NEXT 
Iget address of successor of P (S) and check for write rights 
tmp2 = read(tmpl,word,M.w) NEXT 
read(tmp,word,M.w) NEXT      Icheck write rights 
read(tmp+4,word,M.w) NEXT     Icheck write rights 
read(tmp2+4,word,M.w) NEXT    Icheck write rights 
I IF tmp<l:0> OR tmpl<l:0> OR tmp2<l:0> => exception(111.Operand) NEXT 
write(tmp,word,M.w) = tmp2 NEXT !E(fwd) <= S 
write(tmp+4,word,M.w) = tmpl NEXT     !E(back) <= P 
write(tmp2+4,word,M.w) = tmp NEXT     IS(back) <= E 
write(tmpl,word,M.w) = tmp    IP(fwd) <= E 
END, 

RLIST.ex:=       IRemove from doubly linked LIST 
BEGIN 
tmp = op.addr() NEXT   Iget entry address E 
Memory.Chk()  NEXT 
tmpl = read(tmp,word,M.r) NEXT    Iget address of successor  (S) 
tmp2 = read(tmp+4,word,M.r) NEXT Iget address of pred (P) 
read(tmp2,word,M.w) NEXT Icheck  access rights 
read(tmpl+4,word,M.w) NEXT. Icheck  access rights 
IIF tmp<l:0> OR tmpl<l:0> OR tmp2<l:0> => exception(Il1.Operand) NEXT 
write(tmp2,word,M.w)  = tmpl NEXT IP(fwd)  <= S 
write(tmpl+4,word,M.w)  = tmp2 NEXT IS(back)  <=  P 
store(op.addr())  = tmp 
END, 

MULFIX.ex:= Multiply fixed point 
BEGIN(TC) 
tmp =  0 NEXT 

78 
I 



I 
I 
I 
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tmpl = get.int(single) NEXT 
IF tmpl<31> => (tmp<0> = 1; tmpl = -tmpl) NEXT 
put.int = get.int(sinqle) NEXT 
IF put.int<63> => (tmp<l> * 1; put.int = -put.int) NEXT 
put.int = put.int * get.int NEXT 
DECODE get.int(single)<31> => 

BEGIN 
put.int • put.int SRD get.int, 

put.int SLO (NOT get.int + 1) 

put.int * tmp<0> * tmp<l> 

IDivide fixed point 

•tmpl) NEXT 

-tmp.d) NEXT 

put.int 
END NEXT 

put.int(single,0) 
END, 

DIVFIX.ex:= 
BEGIN(TC) 
tmp = 0 NEXT 
tmpl = get.int(single) NEXT 
IF tmpl EQL 0 => exceptional .Divisor) NEXT 
IF tmpl<31> => (tmp<0> = 1; tmpl = 
tmp.d = get.int(single) NEXT 
IF tmp.d<63> => (tmp<l> = 1; tmp.d 
DECODE get.int(single)<31> => 

BEGIN 
•tmp.d = tmp.d SLO get.int, 
tmp.d = tmp.d SRD (NOT get.int + 1) 
END NEXT 

put.int(single.O)  = (tmp.d / tmpl) * tmp<0> * tmp<l> 
END, 

CMPS.ex:=    !Compare and Swap 
BEGIN 
tmp = get.logO NEXT 
[Serialization and Memory Lock 
tmpl = get.logO NEXT 
tmp2 = op.addr NEXT ISave location of second operand 
DECODE z =  (tmpl EQL get.logO)  => 

BEGIN 
(store(op.addr)  = tmpl; n • tmpl LSS(US)  get.log), 
(store(tmp2)  = tmp; n = 0) 
END 

!memory unlock 
END, 

SIZE.ex:= 
BEGIN 
op.addrO NEXT 
put.log(O)  = size(op.addr<op.size>) 
END, 

SETCC.ex:= !SET Condition Codes 
BEGIN 
eae@c@t@n@z = get.logO 
END, 

REPENT.ex:» 
BEGIN 
Privilege.chk() NEXT 
tmp.d = get.int(l) NEXT 
tmpl = get.logO NEXT 

IREPlace ENTry in map 

!Map Entry 
!Map number 
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IF tmpl GTR 1 => exception(Spec.Error) NEXT 
IF Mw[(Mptr[titipl]<Map.addr>(a'000)-4]  LSS(US)  get.logO  => 

exception(Spec.error) NEXT ICheck map size(from memory) 
Md[(Mptr[tmpl]<Map.addr> + get.log)@'000]  = tmp.d 
!Invalidate any translation buffer associated with this entry 
!Update any copies of the map size 
END, 

MAP.ex:= !Map virtual   address 
BEGIN 
Privilege.chk() NEXT 
get.logO  NEXT    !address 
vp(get.log,M.n) NEXT        Itranslate address 
put.log(O)  = vp NEXT 
put.log(O)  = seg.number 
END, 

WINDOW.ex:= Iwindow to micromachine (Implementation 
dependent) 

BEGIN 
!IF console.enabled •> Break to microcode NEXT 
PC = PC + 1; 
Stop() 
END, 

ENI INebula ISP description 
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out.ioguJ • tmp 
END, 

M0VA.ex:= 
BEGIN 
op.addr() NEXT 
Memory.Chk()  NEXT 
put.log(O)  • op.addr 
END, 

MOVBK.ex:=   !Move Block 
BEGIN 

IWnte A into B 
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I 
I 
I 
I 

tmpl = get.logO NEXT 
tmp2 • get.logO NEXT 
z • tmpl EQL tmp2; 
n = tmpl LSS(US)  tmp2; 
t = 0 
END, 

!  clear operand and condition codes 
CLR.ex:= 

8EGIN 
put.log(O) = 0 

! A=B 
! A<B 

! clear operand 
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Kvm 
get.float() NEXT 
put.float(replace)  = NOT get.float<70> 9 get.float<69:0> 
END, 

!    Convert integer to floating 
FLOAT.ex    := 

BEGIN 
tmpl  = get.int(O) NEXT 
put.float(O)  = int2float(tmpl) 
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float, cmpi) 
I END, 

!    Square Root floating 
SQRTF.ex    := 

BEGIN 
I fact = get.float() NEXT 

put.float(O)  • fp.sqrt(fact) 
END, 

1!    Absolute value floating 
ABSF.ex    := 

BEGIN 
71 
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!Branch if truncate set 
BTS.e\ := (branch(t)), 
IBranch if truncate clear 
BTC.ex := (branch(NOT t)), 
CASE.ex:= 

BEGIN 
tmp = get.int(single) NEXT 
tmp = tmp - get.int(single) NEXT 
DECODE tmp LSS(US) get.int(single) => 

BEGIN 
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I 
I 
I 
I 

'2F: = 

store(op. addr())  = tmp NEXT !load counter 
get.int(single) NEXT 
long.branch =  1 NEXT 

Iget limit 

branchtstore GEQ get.int) 
END, 
BEGIN ! OBGTR 
pc = pc + 1  NEXT 
store(op.addr()) = tmp NEXT lload counter 
get.int(single) NEXT Iget limit 
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END, 
JSR.ex:= 

BEGIN 
op.addr() NEXT 
Memory.Chk() NEXT 
Write.Ctx(l) = Read.Ctx(l) - 4 NEXT 
write(Write.Ctx,Word,M.w) = pc NEXT 
pc = op.addr<31:0> 
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Lron.CA 

I 
I 
I 
I 

BEGIN 
Privilege.Chk() Next 
IF Base => exception(Context.Base) NEXT 
Write.ctx(Maxreg+Maxpar+3) = get.1og() 
END, 

SPSW.ex := 
BEGIN 
Privilege.Chk() Next 
IF Base => exception(Context.Base) NEXT 
put.log(O) = Read.ctx(Maxreg+Maxpar+3) 
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Privilege.Chk() Next 
Write.ctx("FFFFFFFF) = PSW NEXT 
Write.ctx(O) = PC NEXT 
PC = get.log() NEXT 
get.log() NEXT !get process half of psw 
IF ir<Ö> => pop.stack() NEXT 
PSW<0:15> = get.log; 
Kernel = NOT Kernel NEXT 
Build.stack(0,PC,0) NEXT 
Base = 1 
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